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Find a way for a knight to visit every 
square on a board exactly once, and then 
solve a problem for a city tour guide. In 
doing so, find out what computational 
thinking is all about. See how algorithms 
are at its heart, allowing computer 
scientists to solve a problem once, and 
then - as long as they have checked it 
carefully - avoid having to think about it 
ever again. See why computer scientists 
think hiding things makes their life easier, 
especially when they find a good way to 

represent information, and how an ability 
to match patterns lets the lazy computer 
scientist do no more work than absolutely 
necessary. Oh, and finish off by advising 
a tourist information centre using some 
logical thinking. Perhaps surprisingly, 
computer science is not just about 
computers: it is about computation, and 
that crops up in all sorts of situations. 
Above all, it is about thinking in a 
completely different way.

Three puzzles
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The Knight’s  
Tour puzzle
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In the Knight’s Tour puzzle, a single 
chess knight is able to move on 
a small, cross-shaped board. A 
knight can move two spaces in one 
direction and then move one square 
at right angles, or vice versa as 
shown. It jumps to the new square 
without visiting any in between, and 
must always land on a square on 
the board.

You must find a sequence of moves that 
starts from square 1, visits every square 
exactly once by making a knight’s moves, 
and finishes where it started.

Possible first moves 
on the Knight’s Tour



Try to solve the Knight’s Tour puzzle and 
time yourself to see how long it takes you. 
You must do more than just get the knight 
to do a correct tour, though: you must 
find an algorithmic solution. That means 
more than just moving the piece around 
the board. You must record the series of 
moves that works: that is, you must write 
an algorithm that solves the puzzle. Your 
algorithm could just be written as a list 
of the numbers of the squares to visit in 
the order they should be visited. Or you 
could write the algorithm as a series of 
commands like: ‘move from square 1 to 
square 9’- it’s up to you.

Once you have an algorithm that works, 
double check that it really is a solution 
by trying it out. Follow your instructions, 
marking the squares as the knight visits 
them. That way, you can be sure that it 
doesn’t break the rules: that it visits every 
square exactly once. 

If you solve the puzzle, then well done! If 
you can’t, don’t worry – we will see how to 
make it easier to do later.

Algorithmic thinking

This puzzle involves two skills that matter 
to computer scientists, two aspects of 
what they call computational thinking: 
algorithmic thinking and evaluation. 
Algorithmic thinking is based on the idea 
that we only have a solution to a problem 
when we have an algorithm that can do 
it. If we do have an algorithm, then we 
can write a program to do it. Computer 
programs are just algorithms written out 
in a programming language. Evaluation 
is about checking algorithms really do 
work – if you are going to get a computer 
to do things for you, you need to check 
in advance that the instructions you 
give them will do the right thing. Always. 
We will see later that problems like this 
involve several more computational 
thinking skills, but first, let’s try a simpler 
puzzle.

Solve  it!
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You are a hotel tour guide. Tourists 
staying in your hotel expect to be 
taken on a tour visiting all the city’s 
attractions. You have been given 
an underground map that shows all 
the locations of the attractions and 
how you can get from one to another 
using the underground network.

You must work out a route that starts from 
the hotel and will take your tour group to 
every tourist site. The tourists are only in 
the city for the day, so don’t want to waste 
time. They will be unhappy if they pass 
through the same place twice. Obviously, 
they also want to end up back at their 
hotel that evening. 

As with the Knight’s Tour, your task is to 
come up with an algorithmic solution. 
Check that your solution works. Time 
yourself to see if it is harder or easier  
than the Knight’s Tour. 

How long did it take you? And was it easier 
(ie you solved it faster) than the Knight’s 
Tour (if you solved that at all)?

The Tour  
Guide puzzle
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What’s  
required?

of those necessary properties, we can 
then tick them off as we check our 
solution meets them. Computer Scientists 
call properties like this requirements.

For the Tour Guide puzzle, we need to 
check our answer against the following 
requirements:

• The tour starts at the hotel. 

• It visits every location.

•  It does not pass through a location 
already visited.

• It ends at the hotel.

Go back and write a list of requirements 
for the Knight’s Tour too. Perhaps you  
can see similarities? We will come back  
to that.

Why is it important that you check 
that you definitely do have a correct 
solution? Well, you wouldn’t want 
to actually do a tour and find at 
the end of the day that you missed 
something important. You don’t want 
to have to deal with angry tourists! 

One way to check an algorithm is to do 
what computer scientists call dry running 
(or tracing) your algorithm. That simply 
means that you follow the steps of the 
algorithm on paper before you do it for 
real. That is probably how you checked 
your solution for the Knight’s Tour if you 
came up with one. For the Tour Guide 
puzzle, you can draw the route on the 
map as you follow each instruction, 
ticking each location as you visit it. 

Of course, as a real tour guide, you 
wouldn’t just rely on checking the route 
on paper. You would then go out and test 
it for real too, but it can save a lot of time 
to check it on paper first. Programmers 
do the same thing. They check their 
program works on paper (they ‘dry run’ 
it) but then also check it for real – that 
is called testing. Just as you did for the 
puzzle, programmers test their programs 
to make sure they always work.

We can actually be a bit more precise 
about our evaluation. We can work out 
exactly what properties matter for us to 
have a correct solution. If we write a list  
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Graphs
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Why is it easy?

You probably found the Knight’s Tour 
puzzle harder to solve, but actually 
it doesn’t need to be any harder at 
all. It can be solved really easily if 
you use some more computational 
thinking tricks. 

Why is the Tour Guide problem easy? 
The Underground map shows the 
information that matters clearly, ignoring 
the detail that doesn’t matter. It is a good 
abstraction of the problem, in that it 
makes the solution easy to see. Without 
the map, it would have been harder, 
even if we knew which stations linked to 
which. The Tube map is a special way of 
representing the information that we know 
about the problem we have to solve. It is 
a special kind of diagram called a graph. 
A graph to a computer scientist is a series 
of dots (we call those the nodes of the 
graph) and lines that join them (we call 
those the edges of the graph). The nodes 
and edges represent something about the 
data that we are interested in. The edges 
show which nodes are linked in the way 
that we are interested in for the problem. 
The tourist attractions are presumably 
linked by roads too, but in different ways. 
The road graph would be different. That 
is the graph we would need if we were 
running a coach tour!

Ignore it! 

We are interested in the tourist attractions 
(our nodes) and which ones are linked 
to each other by the underground 
connections (our edges). We aren’t 
interested in anything else about the 
places so we ignore everything else. We 
hide the exact locations, how far they 
each are apart, road links and a lot more 
that doesn’t matter to our problem of 
finding an Underground route that visits 
them all. The graph is an abstraction of 
the real city. We have hidden all the extra 
detail that we don’t need when we create 
the graph. The graph only shows the 
information that matters. That makes it 
much clearer to see the information we 
need to use to solve the problem.
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Graphs are often used to represent 
information about the connections between 
things. You will find them on the signs at 
bus stops, and showing the routes on train 
and Underground maps. They are a very 
good representation in situations where you 
want to find routes from place to place as 
we did here. The simplified graph makes it 
easier to find a route than if we had a fully 
accurate and detailed map, as then the 
information that mattered would be hard to 
see amongst all the detail. 

Cycles

Computer scientists actually have a special 
name for this kind of tour of a graph where 
you visit every node exactly once before 
returning back to the start. They call it a 
Hamiltonian cycle, named after an Irish 
physicist, William Rowan Hamilton. He 
invented a puzzle that involved travelling 
to every corner of a 3-dimensional shape 
called a dodecahedron by travelling along 
its edges: a Hamiltonian cycle.

Simplifying 
things



You may have noticed by now that 
the Knight’s Tour and Tour Guide 
problems are very similar. If you 
wrote out the requirements for the 
Knight’s Tour, you may have seen 
they were essentially the same for 
both puzzles:
• The tour starts at a given point 

• It must visit every point

•  It must not pass through a point already 
visited

• It must end at the point it started at.

Both puzzles are asking you to find a 
Hamiltonian cycle! What we have just 
done is a computational thinking trick. We 
have generalised both problems to be the 
same kind of problem. We did it by pattern 
matching – seeing the essential similarities. 
We abstracted away detail like whether it is 
hotels and tourist attractions, and whether 
you move using a knight’s moves or by 
following Tube lines.

So, if the reason the Tour Guide puzzle 
was easy was that we had a map – we 
represented the problem as a graph – then 
why don’t we represent the Knight’s Tour 
problem as a graph too?

We need to do a further abstraction of the 
problem. There are two things to realise. 
First of all, it doesn’t actually matter how 
the board is laid out – we don’t care that 
the squares of the board are squares for 
example – they could be any shape and 
size. Let’s draw each square as a small 
circle instead, just as the tourist attractions 
were circles on the underground map. 
They are just nodes of a graph.

Secondly, seeing which squares are 
actually physically next to one another 
doesn’t actually matter for the puzzle 
either. The only thing that matters is which 
ones you can jump between using a 
knight’s move. So let’s draw lines between 
any two dots when you can use a single 
knight’s move to jump between them. That 
is just like the way the Underground map 
shows which attractions can be jumped 
between using the Underground. They are 
the edges of a graph.

Back  to  the  
beginning
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To create the graph for the Knight’s Tour 
puzzle, move from square to square 
drawing lines and circles (edges and 
nodes). Start with square 1 – draw a circle 
and label it 1. Now, from square 1, you can 
move to square 9, so draw another circle 
and label it 9, drawing a line between 
them.  From square 9, you can only move 
back to 1 or on to square 3, so put a new 
circle marked 3 and draw a line to it from 
spot 9.

Keep doing this until you get back to a 
spot you have already drawn. Then go 
back to square 1 and follow another trail. 
For example: from square 1, you can also 
move to square 7, so if you have a spot 7 
already, then draw a line to it. If not, draw a 

new spot marked 7 and again draw a line 
to it, then continue the trail. Once you have 
followed all trails from spot 1, move to spot 
2 and follow all trails from it in the same 
way (adding spot 2 if it’s not already there). 
Then move on to drawing trails from spot 
3. Keep doing this until you have covered 
all trails from all spots.

When you have finished you have created 
a map of the Knight’s Tour problem.

HINT: there are only two moves possible 
from each of the inner three squares so 
their spots will each have two lines out of 
them in the finished map. There are three 
moves possible from all the other squares 
so their spots will have three lines out of 
them. 

Creating  
the  graph
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Nice and neat

If the drawing you end up with is a bit 
messy with lots of lines crossing each other 
like the one below, you may want to redraw 
it neatly with no lines crossing. It can be 
done very neatly as two linked hexagons 
one inside the other. A version is given 
overleaf.

Once you have drawn the graph, try and 
solve the Knight’s Tour puzzle again. Start 
at node 1 and follow the lines, noting the 
nodes you pass through. It should be fairly 
easy to come up with a solution.

Go for depth
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Go for depth

This method of exploring all the possible 
moves needed to draw the graph is a 
variation of what is called a depth first 
search of the graph: we explore paths to 
their end, following the trail 1 – 9 – 3 – 11 
to the end, before backing up and trying 
different paths. An alternative (called 
breadth first search) would involve drawing 
all the edges from a node before moving 
on to a new node. So, for breadth first 
search, we would draw all the edges from 
node 1. Then we might draw all the edges 
from node 9, followed by all the edges 
from node 6, and so on. These are two 
different algorithms for exploring graphs 
exhaustively: two different graph traversal 
algorithms. Once you have realised a 
problem can be represented as a graph, 
you can use these algorithms as an 
organised way to explore the graph –  
and so, the problem.



Solving 
problems
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Now look at your graph carefully. 
With a bit of care about how you 
draw it, you should be able to 
actually draw it so it looks exactly 
the same as the Tube map. The 
only difference will be in the labels 
attached to the nodes. They will be 
numbers instead of names of places.

What this shows is that we can actually 
generalise these two problems to be 
exactly the same problem, not just the 
same kind of problem. If you have a 
solution to one (an algorithm that solves 
it), then you immediately have a solution to 
the other too! All you have to do is re-label 
the graph. A generalised version of the 
algorithm will solve both. You don’t actually 
have to solve it anew.
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The table below tells you how to 
re-label a graph describing one 
of our two problems into a graph 
describing the other. It also tells 
you how to convert a solution for 
one problem into a solution for  
the other. For each step in your  
answer to one, all you have to  
do is look it up and swap it for  
the corresponding label. 

So if we came up with the following 
solution to the Knight’s Tour:

1-9-3-11-5-7-12-4-10-2-8-6-1

then – using the table – we immediately  
get a solution to the Tour Guide.

Hotel – Science Museum – Toy Shop – 
Big Wheel – Park – Zoo – Aquarium – Art 
Gallery – Wax Works – War Ship – Castle   
– Cathedral – Hotel

Mapping  
between  maps

Knight’s Tour Square Tour Guide Attraction

1 Hotel

2 War ship

3 Toy Shop

4 Art Gallery

5 Park

6 Cathedral

7 Zoo

8 Castle

9 Science Museum

10 Wax Works

11 Big Wheel

12 Aquarium
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A  map  for  
both  problems
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You can see the mapping in this 
version of the map that shows one 
solution.

Of course, as there are many solutions 
possible, the actual solutions you came 
up with might be different – but if so, both 
solutions will solve both puzzles.

Perhaps surprisingly, the two apparently 
different problems are actually exactly 
the same problem with exactly the same 
solution (once generalised). Once you 
have solved one, you have solved both!
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The Bridges of 
Königsberg
Here is a final puzzle to think about. On 
the opposite page is a map of the city of 
Königsberg, showing the river that runs 
through the middle, its two islands and 
the seven bridges that cross the river.

The tourist information centre would like 
to publish a route that visits each part of 
the city (both banks and both islands) 
and that crosses each bridge once (and 
no more). It should start and end in the 
same place. You have been asked to 
advise them. Either provide a route or  
if you can’t, explain why not.

A variation of this puzzle was solved by 
the mathematician Leonard Euler in the 
18th century. His solution introduced 
the idea of graphs in the first place. 
This ultimately led to them becoming a 
key computational thinking tool of both 
mathematicians and computer scientists. 
Victorian computer scientists Charles 
Babbage and Ada Lovelace are known to 
have had a go at solving the puzzle in the 
19th century.

Draw a graph of the problem and see if 
you can solve it. The answer is given at 
the end of the booklet.
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Algorithms 

Each route you came up with is a 
sequence of instructions that can be 
followed to visit every tourist attraction or 
square of the board before going back to 
the start. It is a simple algorithm for doing 
a tour of the city or of the board. There 
are several different routes you could 
take – several different algorithms can be 
solutions to the same problem. 

Why is it important to write down an 
algorithm when we solve a problem? Well, 
once we write the algorithm down, we can 
follow it as many times as we want (eg 
we could give tours over and over again 
with no more problem solving work). We 
can even give it to someone else to follow: 
your junior assistant perhaps, assuming 
you are the Tour Company Manager, or 
just an individual tourist. Then you won’t 
need that person to have to work a route 
out for themselves. Algorithms can also 
be turned into programs – and then a 
computer can do the work instead.

Once we have written down an algorithm, 
it is important that we evaluate it. We 
must check that it works. In particular, 
that means that we must check that the 
algorithm meets a set of properties that 
describe the problem. These are known 
as requirements.

Representation

We can make a problem easier to solve by 
choosing a good representation of it. The 
representation that we used is a kind of 
diagram that a computer scientist calls a 
graph. A graph is a series of spots (we call 
those the nodes of the graph) and lines 
that join them (we call those the edges of 
the graph). We turned the Knight’s Tour 
puzzle into a graph by having a node for 
each square of the board. We then added 
an edge for each possible knight move. It 
is this change of representation of the data 
that makes the puzzle easier.

To create the graph, we had to do an 
abstraction. Abstraction is just the hiding 
of information. To think of it another way, 
you must change the representation of 
the puzzle – change the way that it is 
presented, change what the board looks 
like and how the moves are done – to 
make the things that matter in the puzzle 
clearer. The positions of the board and 
how you can move between them are 
the only things that matter, so that is the 
abstraction we use – we hide all other 
information like the shape, size and 
position of the ‘squares’ of the board.
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Generalisation 

We also saw two examples of generalisation. 
First of all, we could generalise both 
problem statements and see that they 
are really the same kind of problem that 
involves finding a series of moves that visit 
every point exactly once before returning 
to the start. Secondly, both problems could 
be represented as a graph (and actually 
the same one). A graph is a general 
representation – lots of apparently different 
problems can be represented by graphs. 
Then any algorithm we work out that applies 
to graphs can be used on any of these 
different problems. 

For our two problems, because the graphs 
are the same and the requirements are the 
same, we could generalise the solutions too. 
The solutions to both problems turn into 
exactly the same series of steps of the graph 
up to the words/numbers we have used to 
label the nodes. That, of course, isn’t always 
the case for different problems. The graphs 
or requirements - and so solutions - of two 
problems could be very different.

Pattern matching

Spotting when two problems are the same 
(or very similar) is an important part of 
computational thinking called pattern 
matching. It saves work as it allows us to 
avoid redoing essentially the same thing 
every time we are given a new problem. 

When you see a problem or puzzle about 
the way different places are linked, think 
about graphs. Another way of saying this 
is to see if you can match a problem to the 
pattern of moving from point to point, then 
use a graph to represent it. The points don’t 
have to be physical places. They could be 
web pages (with hyperlinks between them), 
alarm clock states (with button presses that 
move between them), cities (with flights 
between them) or much more.

If we find that two graphs match, we may 
realise that we already have the answer. All 
we have to do is transform the graphs to be 
the same thing by swapping the labels over, 
and we can transform the answer of one 
into the answer of the other. We then just 
read off an answer to both problems from 
the general solution.

Computational 
Thinking
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a route and we draw a red line over the 
graph to show it. All the edges must be 
on the route so should be coloured red. 
Now think about a node on that route. It 
must have a red line in to it for every red 
line out from it. Otherwise, the route will 
get stuck when it arrives on that extra 
edge. It will have no way out without going 
back over a bridge already crossed. The 
same reasoning applies to every node. 
That means all nodes must have an even 
number of edges connected to them if 
there is such a route.

All the nodes on the Königsberg graph 
have an odd number of edges, so there is 
no such tour possible.

Find out more at:  
www.cs4fn.org/ada/puzzlingdoodles.php

Logical Thinking 

Another core part of computational 
thinking is being able to think logically. 
A good representation helps with this by 
removing the clutter so that you can focus 
on what matters. That is exactly what 
Leonard Euler found with the Bridges 
of Königsberg puzzle when he came up 
with the idea of drawing a graph. He then 
combined it with some very clear thinking.

What he realised looking at the graph 
was that it was impossible to come up 
with a route. Why?  Any suitable route 
must visit every node. It must also involve 
every edge but only once (as they are the 
bridges and the route must cross every 
bridge once). Let’s suppose there is such 
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