
Computational
Thinking:
Puzzling Tours

A Computer Science for Fun / Teaching London Computing / CHI+MED Special

The Knight’s Tour puzzle

The Tour Guide puzzle

Explore abstraction
and representation

Puzzling
tours

2 www.cs4fn.org

Find a way for a knight to visit every
square on a board exactly once, and then
solve a problem for a city tour guide. In
doing so, find out what computational
thinking is all about. See how algorithms
are at its heart, allowing computer
scientists to solve a problem once, and
then - as long as they have checked it
carefully - avoid having to think about it
ever again. See why computer scientists
think hiding things makes their life easier,
especially when they find a good way to

represent information, and how an ability
to match patterns lets the lazy computer
scientist do no more work than absolutely
necessary. Oh, and finish off by advising
a tourist information centre using some
logical thinking. Perhaps surprisingly,
computer science is not just about
computers: it is about computation, and
that crops up in all sorts of situations.
Above all, it is about thinking in a
completely different way.

Three puzzles

www.cs4fn.org 3

4 www.cs4fn.org

1 2

3 4 5 6

7 8 9 10

11 12

The Knight’s
Tour puzzle

4 www.cs4fn.org

In the Knight’s Tour puzzle, a single
chess knight is able to move on
a small, cross-shaped board. A
knight can move two spaces in one
direction and then move one square
at right angles, or vice versa as
shown. It jumps to the new square
without visiting any in between, and
must always land on a square on
the board.

You must find a sequence of moves that
starts from square 1, visits every square
exactly once by making a knight’s moves,
and finishes where it started.

Possible first moves
on the Knight’s Tour

Try to solve the Knight’s Tour puzzle and
time yourself to see how long it takes you.
You must do more than just get the knight
to do a correct tour, though: you must
find an algorithmic solution. That means
more than just moving the piece around
the board. You must record the series of
moves that works: that is, you must write
an algorithm that solves the puzzle. Your
algorithm could just be written as a list
of the numbers of the squares to visit in
the order they should be visited. Or you
could write the algorithm as a series of
commands like: ‘move from square 1 to
square 9’- it’s up to you.

Once you have an algorithm that works,
double check that it really is a solution
by trying it out. Follow your instructions,
marking the squares as the knight visits
them. That way, you can be sure that it
doesn’t break the rules: that it visits every
square exactly once.

If you solve the puzzle, then well done! If
you can’t, don’t worry – we will see how to
make it easier to do later.

Algorithmic thinking

This puzzle involves two skills that matter
to computer scientists, two aspects of
what they call computational thinking:
algorithmic thinking and evaluation.
Algorithmic thinking is based on the idea
that we only have a solution to a problem
when we have an algorithm that can do
it. If we do have an algorithm, then we
can write a program to do it. Computer
programs are just algorithms written out
in a programming language. Evaluation
is about checking algorithms really do
work – if you are going to get a computer
to do things for you, you need to check
in advance that the instructions you
give them will do the right thing. Always.
We will see later that problems like this
involve several more computational
thinking skills, but first, let’s try a simpler
puzzle.

Solve it!

www.cs4fn.org 5

Hotel

Park

Science Museum

Zoo Toy Shop

Big Wheel

War Ship

CastleCathedral

Aquarium

Art Gallery Wax works

6 www.cs4fn.org

You are a hotel tour guide. Tourists
staying in your hotel expect to be
taken on a tour visiting all the city’s
attractions. You have been given
an underground map that shows all
the locations of the attractions and
how you can get from one to another
using the underground network.

You must work out a route that starts from
the hotel and will take your tour group to
every tourist site. The tourists are only in
the city for the day, so don’t want to waste
time. They will be unhappy if they pass
through the same place twice. Obviously,
they also want to end up back at their
hotel that evening.

As with the Knight’s Tour, your task is to
come up with an algorithmic solution.
Check that your solution works. Time
yourself to see if it is harder or easier
than the Knight’s Tour.

How long did it take you? And was it easier
(ie you solved it faster) than the Knight’s
Tour (if you solved that at all)?

The Tour
Guide puzzle

Hotel

Park

Science Museum

Zoo Toy Shop

Big Wheel

War Ship

CastleCathedral

Aquarium

Art Gallery Wax works

What’s
required?

of those necessary properties, we can
then tick them off as we check our
solution meets them. Computer Scientists
call properties like this requirements.

For the Tour Guide puzzle, we need to
check our answer against the following
requirements:

• The tour starts at the hotel.

• It visits every location.

• It does not pass through a location
already visited.

• It ends at the hotel.

Go back and write a list of requirements
for the Knight’s Tour too. Perhaps you
can see similarities? We will come back
to that.

Why is it important that you check
that you definitely do have a correct
solution? Well, you wouldn’t want
to actually do a tour and find at
the end of the day that you missed
something important. You don’t want
to have to deal with angry tourists!

One way to check an algorithm is to do
what computer scientists call dry running
(or tracing) your algorithm. That simply
means that you follow the steps of the
algorithm on paper before you do it for
real. That is probably how you checked
your solution for the Knight’s Tour if you
came up with one. For the Tour Guide
puzzle, you can draw the route on the
map as you follow each instruction,
ticking each location as you visit it.

Of course, as a real tour guide, you
wouldn’t just rely on checking the route
on paper. You would then go out and test
it for real too, but it can save a lot of time
to check it on paper first. Programmers
do the same thing. They check their
program works on paper (they ‘dry run’
it) but then also check it for real – that
is called testing. Just as you did for the
puzzle, programmers test their programs
to make sure they always work.

We can actually be a bit more precise
about our evaluation. We can work out
exactly what properties matter for us to
have a correct solution. If we write a list

www.cs4fn.org 7

Graphs

8 www.cs4fn.org

www.cs4fn.org 9

Why is it easy?

You probably found the Knight’s Tour
puzzle harder to solve, but actually
it doesn’t need to be any harder at
all. It can be solved really easily if
you use some more computational
thinking tricks.

Why is the Tour Guide problem easy?
The Underground map shows the
information that matters clearly, ignoring
the detail that doesn’t matter. It is a good
abstraction of the problem, in that it
makes the solution easy to see. Without
the map, it would have been harder,
even if we knew which stations linked to
which. The Tube map is a special way of
representing the information that we know
about the problem we have to solve. It is
a special kind of diagram called a graph.
A graph to a computer scientist is a series
of dots (we call those the nodes of the
graph) and lines that join them (we call
those the edges of the graph). The nodes
and edges represent something about the
data that we are interested in. The edges
show which nodes are linked in the way
that we are interested in for the problem.
The tourist attractions are presumably
linked by roads too, but in different ways.
The road graph would be different. That
is the graph we would need if we were
running a coach tour!

Ignore it!

We are interested in the tourist attractions
(our nodes) and which ones are linked
to each other by the underground
connections (our edges). We aren’t
interested in anything else about the
places so we ignore everything else. We
hide the exact locations, how far they
each are apart, road links and a lot more
that doesn’t matter to our problem of
finding an Underground route that visits
them all. The graph is an abstraction of
the real city. We have hidden all the extra
detail that we don’t need when we create
the graph. The graph only shows the
information that matters. That makes it
much clearer to see the information we
need to use to solve the problem.

10 www.cs4fn.org

Graphs are often used to represent
information about the connections between
things. You will find them on the signs at
bus stops, and showing the routes on train
and Underground maps. They are a very
good representation in situations where you
want to find routes from place to place as
we did here. The simplified graph makes it
easier to find a route than if we had a fully
accurate and detailed map, as then the
information that mattered would be hard to
see amongst all the detail.

Cycles

Computer scientists actually have a special
name for this kind of tour of a graph where
you visit every node exactly once before
returning back to the start. They call it a
Hamiltonian cycle, named after an Irish
physicist, William Rowan Hamilton. He
invented a puzzle that involved travelling
to every corner of a 3-dimensional shape
called a dodecahedron by travelling along
its edges: a Hamiltonian cycle.

Simplifying
things

You may have noticed by now that
the Knight’s Tour and Tour Guide
problems are very similar. If you
wrote out the requirements for the
Knight’s Tour, you may have seen
they were essentially the same for
both puzzles:
• The tour starts at a given point

• It must visit every point

• It must not pass through a point already
visited

• It must end at the point it started at.

Both puzzles are asking you to find a
Hamiltonian cycle! What we have just
done is a computational thinking trick. We
have generalised both problems to be the
same kind of problem. We did it by pattern
matching – seeing the essential similarities.
We abstracted away detail like whether it is
hotels and tourist attractions, and whether
you move using a knight’s moves or by
following Tube lines.

So, if the reason the Tour Guide puzzle
was easy was that we had a map – we
represented the problem as a graph – then
why don’t we represent the Knight’s Tour
problem as a graph too?

We need to do a further abstraction of the
problem. There are two things to realise.
First of all, it doesn’t actually matter how
the board is laid out – we don’t care that
the squares of the board are squares for
example – they could be any shape and
size. Let’s draw each square as a small
circle instead, just as the tourist attractions
were circles on the underground map.
They are just nodes of a graph.

Secondly, seeing which squares are
actually physically next to one another
doesn’t actually matter for the puzzle
either. The only thing that matters is which
ones you can jump between using a
knight’s move. So let’s draw lines between
any two dots when you can use a single
knight’s move to jump between them. That
is just like the way the Underground map
shows which attractions can be jumped
between using the Underground. They are
the edges of a graph.

Back to the
beginning

www.cs4fn.org 11

To create the graph for the Knight’s Tour
puzzle, move from square to square
drawing lines and circles (edges and
nodes). Start with square 1 – draw a circle
and label it 1. Now, from square 1, you can
move to square 9, so draw another circle
and label it 9, drawing a line between
them. From square 9, you can only move
back to 1 or on to square 3, so put a new
circle marked 3 and draw a line to it from
spot 9.

Keep doing this until you get back to a
spot you have already drawn. Then go
back to square 1 and follow another trail.
For example: from square 1, you can also
move to square 7, so if you have a spot 7
already, then draw a line to it. If not, draw a

new spot marked 7 and again draw a line
to it, then continue the trail. Once you have
followed all trails from spot 1, move to spot
2 and follow all trails from it in the same
way (adding spot 2 if it’s not already there).
Then move on to drawing trails from spot
3. Keep doing this until you have covered
all trails from all spots.

When you have finished you have created
a map of the Knight’s Tour problem.

HINT: there are only two moves possible
from each of the inner three squares so
their spots will each have two lines out of
them in the finished map. There are three
moves possible from all the other squares
so their spots will have three lines out of
them.

Creating
the graph

12 www.cs4fn.org

Nice and neat

If the drawing you end up with is a bit
messy with lots of lines crossing each other
like the one below, you may want to redraw
it neatly with no lines crossing. It can be
done very neatly as two linked hexagons
one inside the other. A version is given
overleaf.

Once you have drawn the graph, try and
solve the Knight’s Tour puzzle again. Start
at node 1 and follow the lines, noting the
nodes you pass through. It should be fairly
easy to come up with a solution.

Go for depth

www.cs4fn.org 13

1

97

3

11

2

8

6

12

4

10

5

Go for depth

This method of exploring all the possible
moves needed to draw the graph is a
variation of what is called a depth first
search of the graph: we explore paths to
their end, following the trail 1 – 9 – 3 – 11
to the end, before backing up and trying
different paths. An alternative (called
breadth first search) would involve drawing
all the edges from a node before moving
on to a new node. So, for breadth first
search, we would draw all the edges from
node 1. Then we might draw all the edges
from node 9, followed by all the edges
from node 6, and so on. These are two
different algorithms for exploring graphs
exhaustively: two different graph traversal
algorithms. Once you have realised a
problem can be represented as a graph,
you can use these algorithms as an
organised way to explore the graph –
and so, the problem.

Solving
problems

14 www.cs4fn.org

Now look at your graph carefully.
With a bit of care about how you
draw it, you should be able to
actually draw it so it looks exactly
the same as the Tube map. The
only difference will be in the labels
attached to the nodes. They will be
numbers instead of names of places.

What this shows is that we can actually
generalise these two problems to be
exactly the same problem, not just the
same kind of problem. If you have a
solution to one (an algorithm that solves
it), then you immediately have a solution to
the other too! All you have to do is re-label
the graph. A generalised version of the
algorithm will solve both. You don’t actually
have to solve it anew.

www.cs4fn.org 15

1 9

7 3

11

2

86

12

4 10

5

Same problem,
same solution

16 www.cs4fn.org

1 9

7 3

11

2

86

12

4 10

5

Hotel

Park

Science Museum

Zoo Toy Shop

Big Wheel

War Ship

CastleCathedral

Aquarium

Art Gallery Wax works

The table below tells you how to
re-label a graph describing one
of our two problems into a graph
describing the other. It also tells
you how to convert a solution for
one problem into a solution for
the other. For each step in your
answer to one, all you have to
do is look it up and swap it for
the corresponding label.

So if we came up with the following
solution to the Knight’s Tour:

1-9-3-11-5-7-12-4-10-2-8-6-1

then – using the table – we immediately
get a solution to the Tour Guide.

Hotel – Science Museum – Toy Shop –
Big Wheel – Park – Zoo – Aquarium – Art
Gallery – Wax Works – War Ship – Castle
– Cathedral – Hotel

Mapping
between maps

Knight’s Tour Square Tour Guide Attraction

1 Hotel

2 War ship

3 Toy Shop

4 Art Gallery

5 Park

6 Cathedral

7 Zoo

8 Castle

9 Science Museum

10 Wax Works

11 Big Wheel

12 Aquarium

1 9

7 3

11

2

86

12

4 10

5

Hotel

Park

Science Museum

Zoo Toy Shop

Big Wheel

War Ship

CastleCathedral

Aquarium

Art Gallery Wax works

A map for
both problems

www.cs4fn.org 17

You can see the mapping in this
version of the map that shows one
solution.

Of course, as there are many solutions
possible, the actual solutions you came
up with might be different – but if so, both
solutions will solve both puzzles.

Perhaps surprisingly, the two apparently
different problems are actually exactly
the same problem with exactly the same
solution (once generalised). Once you
have solved one, you have solved both!

18 www.cs4fn.org

The Bridges of
Königsberg
Here is a final puzzle to think about. On
the opposite page is a map of the city of
Königsberg, showing the river that runs
through the middle, its two islands and
the seven bridges that cross the river.

The tourist information centre would like
to publish a route that visits each part of
the city (both banks and both islands)
and that crosses each bridge once (and
no more). It should start and end in the
same place. You have been asked to
advise them. Either provide a route or
if you can’t, explain why not.

A variation of this puzzle was solved by
the mathematician Leonard Euler in the
18th century. His solution introduced
the idea of graphs in the first place.
This ultimately led to them becoming a
key computational thinking tool of both
mathematicians and computer scientists.
Victorian computer scientists Charles
Babbage and Ada Lovelace are known to
have had a go at solving the puzzle in the
19th century.

Draw a graph of the problem and see if
you can solve it. The answer is given at
the end of the booklet.

www.cs4fn.org 19

North Bank

South Bank

West Island East
Island

20 www.cs4fn.org

Computational
Thinking

20 www.cs4fn.org

www.cs4fn.org 21

Algorithms

Each route you came up with is a
sequence of instructions that can be
followed to visit every tourist attraction or
square of the board before going back to
the start. It is a simple algorithm for doing
a tour of the city or of the board. There
are several different routes you could
take – several different algorithms can be
solutions to the same problem.

Why is it important to write down an
algorithm when we solve a problem? Well,
once we write the algorithm down, we can
follow it as many times as we want (eg
we could give tours over and over again
with no more problem solving work). We
can even give it to someone else to follow:
your junior assistant perhaps, assuming
you are the Tour Company Manager, or
just an individual tourist. Then you won’t
need that person to have to work a route
out for themselves. Algorithms can also
be turned into programs – and then a
computer can do the work instead.

Once we have written down an algorithm,
it is important that we evaluate it. We
must check that it works. In particular,
that means that we must check that the
algorithm meets a set of properties that
describe the problem. These are known
as requirements.

Representation

We can make a problem easier to solve by
choosing a good representation of it. The
representation that we used is a kind of
diagram that a computer scientist calls a
graph. A graph is a series of spots (we call
those the nodes of the graph) and lines
that join them (we call those the edges of
the graph). We turned the Knight’s Tour
puzzle into a graph by having a node for
each square of the board. We then added
an edge for each possible knight move. It
is this change of representation of the data
that makes the puzzle easier.

To create the graph, we had to do an
abstraction. Abstraction is just the hiding
of information. To think of it another way,
you must change the representation of
the puzzle – change the way that it is
presented, change what the board looks
like and how the moves are done – to
make the things that matter in the puzzle
clearer. The positions of the board and
how you can move between them are
the only things that matter, so that is the
abstraction we use – we hide all other
information like the shape, size and
position of the ‘squares’ of the board.

22 www.cs4fn.org

Generalisation

We also saw two examples of generalisation.
First of all, we could generalise both
problem statements and see that they
are really the same kind of problem that
involves finding a series of moves that visit
every point exactly once before returning
to the start. Secondly, both problems could
be represented as a graph (and actually
the same one). A graph is a general
representation – lots of apparently different
problems can be represented by graphs.
Then any algorithm we work out that applies
to graphs can be used on any of these
different problems.

For our two problems, because the graphs
are the same and the requirements are the
same, we could generalise the solutions too.
The solutions to both problems turn into
exactly the same series of steps of the graph
up to the words/numbers we have used to
label the nodes. That, of course, isn’t always
the case for different problems. The graphs
or requirements - and so solutions - of two
problems could be very different.

Pattern matching

Spotting when two problems are the same
(or very similar) is an important part of
computational thinking called pattern
matching. It saves work as it allows us to
avoid redoing essentially the same thing
every time we are given a new problem.

When you see a problem or puzzle about
the way different places are linked, think
about graphs. Another way of saying this
is to see if you can match a problem to the
pattern of moving from point to point, then
use a graph to represent it. The points don’t
have to be physical places. They could be
web pages (with hyperlinks between them),
alarm clock states (with button presses that
move between them), cities (with flights
between them) or much more.

If we find that two graphs match, we may
realise that we already have the answer. All
we have to do is transform the graphs to be
the same thing by swapping the labels over,
and we can transform the answer of one
into the answer of the other. We then just
read off an answer to both problems from
the general solution.

Computational
Thinking

www.cs4fn.org 23

North Bank

South Bank

East
Island

West
Island

If you enter on the
black edge, there is

no way to leave!

If you enter on the
black edge, there is

no way to leave!

If you enter on the
black edge, there is

no way to leave!

If you enter on the
black edge, there is

no way to leave!

a route and we draw a red line over the
graph to show it. All the edges must be
on the route so should be coloured red.
Now think about a node on that route. It
must have a red line in to it for every red
line out from it. Otherwise, the route will
get stuck when it arrives on that extra
edge. It will have no way out without going
back over a bridge already crossed. The
same reasoning applies to every node.
That means all nodes must have an even
number of edges connected to them if
there is such a route.

All the nodes on the Königsberg graph
have an odd number of edges, so there is
no such tour possible.

Find out more at:
www.cs4fn.org/ada/puzzlingdoodles.php

Logical Thinking

Another core part of computational
thinking is being able to think logically.
A good representation helps with this by
removing the clutter so that you can focus
on what matters. That is exactly what
Leonard Euler found with the Bridges
of Königsberg puzzle when he came up
with the idea of drawing a graph. He then
combined it with some very clear thinking.

What he realised looking at the graph
was that it was impossible to come up
with a route. Why? Any suitable route
must visit every node. It must also involve
every edge but only once (as they are the
bridges and the route must cross every
bridge once). Let’s suppose there is such

Teaching London Computing:
www.teachinglondoncomputing.org

Computer Science for Fun:
www.cs4fn.org

This booklet was written by Paul Curzon, Queen Mary University of London, June 2015, with support from
the CHI+MED and Teaching London Computing Teams. It was funded by Queen Mary University of London,
CHI+MED (EPSRC EP/G059063/1), the Mayor of London and Department for Education. cs4fn is a partner
on the BBC’s Make it Digital campaign. The Knight’s Tour puzzle was adapted from an idea by Maciej Syslo.&
Anna Beata Kwiatkowska, Nicolaus Copernicus University. Linked classroom activity sheets are available from
Teaching London Computing. 29

5_
15

Use of this material
Attribution NonCommercial ShareAlike - “CC BY-NC-SA”
http://creativecommons.org/licenses/by-nc-nd/4.0/

