
1

Landscape Gardening
AQA GCSE Computer Science
Controlled Assessment

2

Design of Solution

Explanation of the Problem
I need to create a solution to the following problem:

A gardening company creates gardens using the following materials:

• Lawn
• Concrete Patio
• Wooden Decking
• Ponds (rectangular)
• Water Features
• Garden Lights

Each of these materials has an associated cost (for lawn, concrete, decking and ponds this is a cost
per square metre, for water features and lights it is the cost per unit). Each one also has a set time
to install (again, the first four is timed per square metre and the last two have a set time per unit).
Labour is charged at a cost per hour.

The company wants to use these costs to work out quotes for clients and also to save these quotes
for later use. They have a specific way they would like the quotes to appear.

They want the costs of the materials to be stored in an external file to allow the user to change them
when needed.

The first task includes working out subtotals for the quote and then the final cost. Parts 1-4 are very
similar (input required is the length and the width, a constant is the cost per square metre and the
output is the total cost), and parts 5-6 are similar (input is number of units, constant is cost per unit
and output is the total cost). The total labour cost is the number of hours required (calculated by
the number of square metres for each of 1-4 multiplied by the time in minutes and the number of
units for 5-6 multiplied by the time in minutes). The lengths and widths are positive real numbers
and the number of units is a positive integer (all can be 0).

The second task requires the system to save quotes, this will obviously require some sort of
database. The database has two tables: the client and the details of the quote (because a client can
have more than one quote but a quote belongs to only one client). The client will need a primary
key to uniquely identify them, as will the quote.

The third task asks for the data on the cost of raw materials to be stored in an external file. This
could be a database but I assume that I should use a text file (this could be so that someone could
change the data without having access to the quotes). This will require a format such as CSV for the
file and the program will have to read this information every time it is started. There are 6 different
raw materials given earlier.

The fourth task is about preparing monthly reports on the total amount and cost of all the raw
materials used. The user would type in a number (the example given is both “June” or 6 for June)

3

and they would see all of the material used in June. It isn’t clear if this is for every June or just for
the most recent one so I will make it just for the month that has passed most recently (i.e. if it is May
now (2012) and month 5 was searched for then the results from May 2011 would be shown). This
will involve the quotes in the database stored with two dates: one for when the quote was given
(this will help with search in task 2) and one for when the work is to be done (this is for the monthly
material report). The first date should be required but the second date should only be only be put in
if it is known (if it isn’t then it should be null), so jobs with no second date set should not be included
in the material monthly report. There is a set format for the monthly report data to be presented.

Overview Plan
The database needs to have the following information:

client
clientID Integer (primary key) Required
clientName Text (up to 100 characters) Required

quote
quoteID Integer (primary key) Required
clientID Integer (foreign key) Required
dateOfQuote Date Required
dateOfJob Date Not Required
lawnLength Float Required
lawnWidth Float Required
lawnCostPerM Float Required
patioLength Float Required
patioWidth Float Required
patioCostPerM Float Required
deckingLength Float Required
deckingWidth Float Required
deckingCostPerM Float Required
pondLength Float Required
pondWidth Float Required
pondCostPerM Float Required
featureNumber Integer Required
featuresCostEa Float Required
lightingNumber Integer Required
lightingCostEa Float Required

This means that if the cost of the material changes then the cost of the quote will not change too.

The system will work together like this:

4

Where the red arrows show how you can get between the various parts of the program and the blue
arrows showing how the data flows.

The opening menu needs to have four choices:

1. Search for a quote
2. Add quote
3. Monthly report
4. Exit

The brief doesn’t say how the quotes are to be searched so for my system I am going to allow
searching by client name and searching by date of quotation as well as the quote reference number
(clientName, dateOfQuote and quoteID in the quote table). Because the cost of the raw material
can change I am going to recalculate the cost of the work every time using the price of raw materials
stored in the database. I could use the database to store all of the information that has been
calculated but I want to leave it like this so the quote can be easily changed (eg the length of the
lawn can be changed but the costs and area won’t need to be).

The search for quote requires the user to enter a quote number.

The information returned will be a combination of the working cost and labour cost tables seen in
the specimen.

The add quote menu will need the following options:

1. Existing client
2. Add new client

If add new client is selected then the user should be prompted to enter their name and will be
returned to this menu, if existing client is selected then the user will be presented with a list of all
the clients in alphabetical order and will need to choose the correct number, e.g.:

1. Adams, 000223

5

2. Babledy, 000144
3. Carnock, 001003
4. …

This isn’t suitable if the program will be used for hundreds of clients but it will work on a small scale.

Once the user has selected their client they will need to enter the following information, prompted
one after the other (if nothing is entered then the user will be prompted before a zero will be
entered). The information to be entered will be:

1. Lawn Length
2. Lawn Width
3. Patio Length
4. Patio Width
5. Decking Length
6. Decking Width
7. Pond Length
8. Pond Width
9. Number of Water Features
10. Number of Lights
11. Date of job (can be left blank)

Entries 1-8 will be validated as positive floats and entries 9 and 10 will be validated as positive
integers.

As soon as the quote has been entered (i.e. the 10th item is finished) the quote will be processed and
will display on the console. The opening menu will be asked again.

The monthly report menu will list the 12 months of the year before the current month (the brief
said that you can enter either the name of the month or the number of the month). When the user
chooses the number 1-12 (validated as only one of those numbers) then the report for that month is
generated.

Proposed Solution
The overall solution will be as follows:

check to see if the database is created (first time only)
SQL will check if tables already exist
RUNFIRSTTIME()

get the materials cost from the external file
and store them in a dictionary
costs ← GETCOSTSFROMFILE(“materials.txt”)
labourCostPerHour ← 16.49 # a constant

loop until the user chooses EXIT
WHILE true
 DISPLAYMENU() # display the main meu
 menuChoice ← INPUT # user input will be validated (1-4)

6

 CASE menuChoice OF # choose the correct option
 1: SEARCHQUOTE()
 2: NEWQUOTE()
 3: MONTHREPORT()
 4: EXIT()
 ENDCASE
ENDWHILE

PROCEDURE DISPLAYMENU()
 # displays the four choices shown earlier
ENDPROCEDURE

PROCEDURE SEARCHQUOTE()
 OUTPUT “Enter quote number”
 quoteNumber ← INPUT # user input will be prompted and validated
 quoteData ← GETQUOTEFROMNUMBER(quoteNumber) # quoteData is a dictionary
 DISPLAYQUOTE(quoteData) # procedure to display to console
ENDPROCEDURE

search the database and get the quote details from the quote number
results are stored in a dictionary datastructure
FUNCTION GETQUOTEFROMNUMBER(quoteNumber)
 OPENDATABASE(db, user, pass) # open the database connection
 details ← QUERYDB(query) # SQL query (see later)
 IF details ≠ NULL
 THEN
 RETURN details
 ELSE
 RETURN none # return ‘none’ if search failed
ENDFUNCTION

process and print the quote information
PROCEDURE DISPLAYQUOTE(quoteData)
 totalMaterialCost ← 0
 OUTPUT “Material Costs”

 # this is for lawn ...
 OUTPUT “Lawn Costs”
 OUTPUT “length:”
 OUTPUT quoteData[‘lawnLength’]
 OUTPUT “width:”
 OUTPUT quoteData[‘lawnWidth’]
 # calculate total area
 # save it in a dictionary for use later (same for patio, pond and decking)
 runningTotals[‘lawnArea’] ← quoteData[‘lawnLength’] * quoteData[‘lawnWidth’]
 OUTPUT “total area:”
 OUTPUT runningTotals[‘lawnArea’]
 OUTPUT “cost per square metre:”
 OUTPUT costs[‘lawnCostPerMetre’]
 OUTPUT “total cost:”
 # calculate total cost using area and the costs dictionary
 cost ← runningTotals[‘lawnArea’] * costs[‘lawnCostPerMetre’]
 OUTPUT cost
 totalMaterialCost ← totalMaterialCost + cost
 # ... patio, decking and pond is identical except for titles

 # this is for the water features ...
 OUTPUT “Water Features”
 OUTPUT “number:”
 OUTPUT quoteData[‘featureNumber’]

7

 OUTPUT “cost per feature:”
 OUTPUT costs[‘featureCost’]
 cost ← costs[‘featureCost’] * quoteData[‘number’]
 OUTPUT cost
 totalMaterialCost ← totalMaterialCost + cost
 # ... lighting is identical except for titles

 OUTPUT “total working costs:”
 OUPUT totalMaterialCost

 # next work out the labour costs
 totalLabourMinutes ← 0
 OUTPUT “Labour Costs”

 # this is for the lawn...
 OUTPUT “Minutes per metre square:”
 OUTPUT costs[‘lawnMinutes’]
 OUTPUT “total area”
 OUTPUT runningTotals[‘lawnArea’]
 OUTPUT “total minutes:”
 minutes ← costs[‘lawnMinutes’] * runningTotals[‘lawnArea’]
 OUTPUT minutes
 totalLabourMinutes ← totalLabourMinutes + minutes
 # ...patio, decking and pond is identical except for titles

 # this is for the water features...
 OUTPUT “Minutes per water feature:”
 OUTPUT costs[‘featuresMinutes’]
 OUTPUT “number purchased:”
 OUTPUT quoteData[‘featureNumber’]
 OUTPUT “total minutes:”
 minutes ← costs[‘featuresMinutes’] * quoteData[‘featureNumber’]
 OUTPUT minutes
 totalLabourMinutes ← totalLabourMinutes + minutes
 # ...lighting is identical except for labels

 OUTPUT “Total Work (minutes):”
 OUTPUT totalLabourMinutes
 OUTPUT “Total Work (hours):”
 hours ← totalLabourMinutes / 60
 OUTPUT hours
 OUTPUT “Cost of Labour (per hour)”
 OUTPUT labourCostPerHour
 OUTPUT “Total Labour Cost”
 totalLabourCost ← totalLabourMinutes * labourCostPerHour
 OUTPUT totalLabourCost

 # finally output the grand totals
 OUTPUT “Total working costs:”
 OUTPUT totalMaterialCost
 OUTPUT “Total labour costs:”
 OUTPUT totalLabourCost
 OUTPUT “Total to Pay by Customer:”
 OUTPUT totalMaterialCost + totalLabourCost
ENDPROCEDURE

PROCEDURE NEWQUOTE()
 OPENDATABASE(db, user, pass)

8

 # displays the two choices shown earlier
 DISPLAYNEWQUOTEMENU()
 menuChoice ← INPUT # user input will be validated (1-2)
 IF menuChoice = 1 # user chooses existing client
 THEN
 clientNumber ← DISPLAYCLIENTS() # display the whole list
 ELSE # user adds new client
 OUTPUT “add new client name”
 clientName ← INPUT
 clientNumber ← QUERYDB(query) # SQL query to save new client
 ENDIF

 # now get all of the information about the garden plan
 OUTPUT “Enter lawn length:”
 # save this as a dictionary that can be used by the display quote proc
 quoteData[‘lawnLength’] ← INPUT # validate as ≤ 0
 OUTPUT “Enter lawn width:”
 quoteData[‘lawnWidth’] ← INPUT # validate as ≤ 0
 # ...this follows in the same way for all the remaining choices

 # ask when the job will be done but can be blank
 OUTPUT “Enter when job to be done (can leave blank)”
 jobDone ← INPUT

 # save all the information to the database
 IF jobDone
 THEN
 QUERYDB(query) # SQL query including jobDone
 ELSE
 QUERYDB(query) # same but without jobDone
 ENDIF

 # display the quote information
 DISPLAYQUOTE(quoteData)
ENDPROCEDURE

PROCEDURE DISPLAYCLIENTS()
 # get all the clients names and clientIDs
 # save the information in a two dimensional array
 OPENDATABASE(db, user, pass)
 clients ← QUERYDB(query) # SQL query to get all clientIDs and clientNames
 FOR i ← 1 TO LEN(clients)
 OUTPUT i
 OUTPUT clients[i][2] # the client name
 OUTPUT clients[i][1] # the client ID
 ENDFOR
 OUTPUT “choose a number”
 choice ← INPUT # validate this as 1 – LEN(clients)
 RETURN clients[choice][1]
ENDPROCEDURE

PROCEDURE MONTHREPORT()
 currentMonth ← GETCURRENTMONTH() # use a built in function for this
 # display all the months like 1. January, 2. February,...
 # DISPLAYMONTHS
 monthChosen ← INPUT
 # work out if it will be last year’s month or this year’s month
 IF monthChosen ≥ currentMonth
 THEN

9

 year = CURRENTYEAR() – 1 # use a built in function
 ELSE
 year = CURRENTYEAR()
 ENDIF

 # get the monthly totals
 OPENDATABASE(db, user, pass)
 totalQuotes ← QUERYDB(query) # query with of all the quotes in month, year
 # keep running totals on all materials
 totalLawn ← 0
 totalPatio ← 0
 totalDecking ← 0
 totalPond ← 0
 totalFeatures ← 0
 totalLighting ← 0
 # iterate over the query results
 FOR i ← 1 TO LEN(totalQuotes)
 totalLawn ← totalLawn +
(totalQuotes[i][‘lawnWidth’]*totalQuotes[i][‘lawnLength’])
 # ...same for patio, decking and ponds
 totalFeatures ← totalFeatures + totalQuotes[i][‘features’]
 # ...same for lighting
 ENDFOR

 # keep the total cost
 totalCost ← 0

 # display the results
 OUTPUT “Lawn total metres:”
 OUTPUT totalLawn
 OUTPUT “Lawn total monthly value:”
 cost ← totalLawn * costs[‘lawn’]
 OUTPUT cost
 totalCost ← totalCost + cost
 # ...exactly the same for the others apart from the labels

 # display total costs
 OUTPUT “Total Monthly Value:”
 OUTPUT totalCost
ENDPROCEDURE

The external text file with the material costs will be called materials.txt and will be a CSV file with
headers of material and the price per m2, the initial file will look like this:

lawn,15.50
patio,20.99
decking,15.75
pond,20.00
feature,150.00
lights,5.00

The SQL queries are:

SELECT * FROM quote WHERE quote.quoteID = ?

SELECT * FROM quote WHERE quote.quoteDate = ?

10

SELECT * FROM quote WHERE quote.clientID = ?

INSERT INTO client(client.name) VALUES ?

INSERT INTO quote(quote..., client.clientID) VALUES (?...,?)

SELECT client.clientID, client.clientName FROM client

SELECT quote.lawnLength, quote.lawnWidth, quote.patioLength... FROM quote
WHERE quote.dateOfQuote ≥ “01/month/year” AND quote.dateOfQuote <
“01/month+1/year”

11

Solution Development

Needs of the User
This is the program being used to do a variety of things (it is not complete but this can be seen in the
testing section), the black text is the computer output and the highlighted red text is the user input.
This shows the menus for the user and the calculations as well as showing data that is saved to and
read from the database:

1. Search for a quote
2. Add quote
3. Monthly report
4. Exit
2
1. Add quote for existing client
2. Add quote for new client
2
Add new client name:
Bob Yeazley
Entering a quote for client 1338309698
Enter lawn length6
Enter lawn width4
Enter patio length0
Enter patio width0
Enter decking length0
Enter decking width0
Enter pond length3
Enter pond width2.5
Enter number of water features2
Enter number of lighting features5
Quote reference number: 1338309719
Material Costs

Lawn Costs
Length: 6.0
Width: 4.0
Total Area: 24.0
Cost per square metre: 15.5
Total Cost: 372.0
Patio Costs
Length: 0.0
Width: 0.0
Total Area: 0.0
Cost per square metre: 20.99
Total Cost: 0.0
Decking Costs
Length: 0.0
Width: 0.0
Total Area: 0.0
Cost per square metre: 15.75
Total Cost: 0.0
Pond Costs
Length: 3.0
Width: 2.5
Total Area: 7.5
Cost per square metre: 25.0
Total Cost: 187.5

12

Water Feature Costs
Number of water features: 2
Cost per feature: 150.0
Total Cost: 300.0
Lighting Costs
Number of lights: 5
Cost per light: 5.0
Total Cost: 25.0

Total Working Costs: 884.5

Labour Costs

Lawn labour costs
Minutes per square metre: 20.0
Total area: 24.0
Total minutes: 480.0
Patio labour costs
Minutes per square metre: 20.0
Total area: 0.0
Total minutes: 0.0
Decking labour costs
Minutes per square metre: 30.0
Total area: 0.0
Total minutes: 0.0
Pond labour costs
Minutes per square metre: 45.0
Total area: 7.5
Total minutes: 337.5
Water feature labour costs
Minutes per water feature: 60.0
Number Purchased 2
Total minutes: 120.0
Garden lighting labour costs
Minutes per water feature: 10.0
Number Purchased 5
Total minutes: 50.0

Total Work (minutes): 987.5
Total Work (hours): 16.4583333333
Cost of Labour (per hour): 16.49
Total Labour Cost 271.397916667

Total Working Costs: 884.5
Total Labour Costs: 271.397916667
Total to Pay by Customer: 1155.89791667

1. Search for a quote
2. Add quote
3. Monthly report
4. Exit
1
Enter the quote number13323
Invalid quote number
Quote Number: 1338309515
Client Name: Andrew Zachary

Quote Number: 1338309719
Client Name: Bob Yeazley

Enter the quote number1338309515

13

Material Costs

Lawn Costs
Length: 10.0
Width: 8.0
Total Area: 80.0
Cost per square metre: 15.5
Total Cost: 1240.0
Patio Costs
Length: 5.0
Width: 5.0
Total Area: 25.0
Cost per square metre: 20.99
Total Cost: 524.75
Decking Costs
Length: 0.0
Width: 0.0
Total Area: 0.0
Cost per square metre: 15.75
Total Cost: 0.0
Pond Costs
Length: 3.0
Width: 4.0
Total Area: 12.0
Cost per square metre: 25.0
Total Cost: 300.0
Water Feature Costs
Number of water features: 3
Cost per feature: 150.0
Total Cost: 450.0
Lighting Costs
Number of lights: 10
Cost per light: 5.0
Total Cost: 50.0

Total Working Costs: 2564.75

Labour Costs

Lawn labour costs
Minutes per square metre: 20.0
Total area: 80.0
Total minutes: 1600.0
Patio labour costs
Minutes per square metre: 20.0
Total area: 25.0
Total minutes: 500.0
Decking labour costs
Minutes per square metre: 30.0
Total area: 0.0
Total minutes: 0.0
Pond labour costs
Minutes per square metre: 45.0
Total area: 12.0
Total minutes: 540.0
Water feature labour costs
Minutes per water feature: 60.0
Number Purchased 3
Total minutes: 180.0
Garden lighting labour costs
Minutes per water feature: 10.0

14

Number Purchased 10
Total minutes: 100.0

Total Work (minutes): 2920.0
Total Work (hours): 48.6666666667
Cost of Labour (per hour): 16.49
Total Labour Cost 802.513333333

Total Working Costs: 2564.75
Total Labour Costs: 802.513333333
Total to Pay by Customer: 3367.26333333

1. Search for a quote
2. Add quote
3. Monthly report
4. Exit
3
11: Nov
10: Oct
12: Dec
1: Jan
3: Mar
2: Feb
5: May
4: Apr
7: Jul
6: Jun
9: Sep
8: Aug
Enter the number of a month (1-12)5
Lawn total metres: 104.0
Lawn total monthly value: 1612.0
Patio total metres: 25.0
Patio total monthly value: 524.75
Decking total metres: 0.0
Decking total monthly value: 0.0
Pond total metres: 19.5
Pond total monthly value: 487.5
Water Feature total: 5.0
Water Feature total monthly value: 750.0
Lighting total: 15.0
Lighting total monthly value: 75.0
Total Monthly Value: 3449.25
1. Search for a quote
2. Add quote
3. Monthly report
4. Exit
4

system closing

Annotated Code
This is the complete code for my project, it is annotated with comments.

import sys
import csv
import sqlite3
import datetime

15

import time

constants used in the program
LABOURPERHOUR = 16.49
DB = 'gardening.db'
MATERIALFILE = 'materials.txt'

structure of the database
def runFirstTime():
 # use try-except to catch any database errors
 try:
 conn = sqlite3.connect(DB)
 c = conn.cursor()
 # create the client table with its two attributes
 # client is created first because clientID is a foreign key in the
quote table
 query = '''CREATE TABLE IF NOT EXISTS client (
 clientID int, clientName text, primary
key(clientID))'''
 c.execute(query)
 conn.commit()
 # create the quote table with 24 attributes
 query = '''CREATE TABLE IF NOT EXISTS quote (
 quoteID int,
 clientID int,
 dayOfQuote int,
 monthOfQuote int,
 yearOfQuote int,
 dayOfJob int,
 monthOfJob int,
 yearOfJob int,
 lawnLength real,
 lawnWidth real,
 lawnCostPerM real,
 patioLength real,
 patioWidth real,
 patioCostPerM real,
 deckingLength real,
 deckingWidth real,
 deckingCostPerM real,
 pondLength real,
 pondWidth real,
 pondCostPerM real,
 featureNumber int,
 featuresCostEa real,
 lightingNumber int,
 lightingCostEa real,
 primary key (quoteID),
 foreign key (clientID) references
client(clientID))'''
 c.execute(query)
 conn.commit()
 c.close()
 except:
 pass

read in the costs from the external file
def getCostsFromFile(filename):
 # save the results in a dictionary
 costs = {}
 try:

16

 # use the built in CSV reader
 fileReader = csv.reader(open(MATERIALFILE, 'rb'))
 # loop over the rows
 for row in fileReader:
 # the text becomes the key in the dictionary and the float is
the value
 costs[row[0]] = float(row[1])
 return costs
 except:
 print "make sure materials.txt exists and is in the correct format"
 sys.exit()

procedure to display the four options
def displayMenu():
 print "1. Search for a quote"
 print "2. Add quote"
 print "3. Monthly report"
 print "4. Exit"

if the search for quote option is chosen
def searchQuote():
 # get the quote number
 quoteNumber = getValidInt("Enter the quote number", 0)
 # check to see that menuChoice is one of the three allowed choices
 # result is a list of the quotes attributes
 result = getQuoteFromNumber(quoteNumber)
 # check a result has been returned
 if not result:
 print "Invalid quote number"
 showAllQuotes()
 quoteNumber = getValidInt("Enter the quote number", 0)
 result = getQuoteFromNumber(quoteNumber)
 # convert result into a dictionary with named keys
 quoteData = {}
 quoteData['lawnLength'] = result[0]
 quoteData['lawnWidth'] = result[1]
 quoteData['patioLength'] = result[3]
 quoteData['patioWidth'] = result[4]
 quoteData['deckingLength'] = result[6]
 quoteData['deckingWidth'] = result[7]
 quoteData['pondLength'] = result[9]
 quoteData['pondWidth'] = result[10]
 quoteData['featureNumber'] = result[12]
 quoteData['lightingNumber'] = result[14]
 # display the quote
 displayQuote(quoteData)

get the quote from the quote number
def getQuoteFromNumber(quoteNumber):
 try:
 conn = sqlite3.connect(DB)
 c = conn.cursor()
 # SQL query to find all of the details based on the quote number
(ID)
 c.execute('''SELECT lawnLength, lawnWidth,
 lawnCostPerM, patioLength, patioWidth, patioCostPerM,
 deckingLength, deckingWidth, deckingCostPerM,
pondLength,
 pondWidth, pondCostPerM, featureNumber, featuresCostEa,
 lightingNumber, lightingCostEa FROM quote WHERE
quoteID=?''', (quoteNumber,))

17

 # one result is fetched and returned
 result = c.fetchone()
 return result
 except:
 # this is displayed if a database error has occured
 print "could not get result from database"

procedure to display all the quote numbers with the clients
def showAllQuotes():
 try:
 conn = sqlite3.connect(DB)
 c = conn.cursor()
 # SQL query to find all of the quotes
 c.execute('''SELECT quote.quoteID, client.clientName FROM quote,
client
 WHERE quote.clientID = client.clientID''')
 # the results are fetched and returned
 result = c.fetchall()
 for quote in result:
 print "Quote Number:",
 print quote[0]
 print "Client Name:",
 print quote[1]
 print ""
 except:
 # this is displayed if a database error has occured
 print "could not get result from database"

procedure that calculates all of the costs for a quote and displays it
def displayQuote(quoteData):
 # runningTotals keeps the costs of the materials in a dictionary
 runningTotals = {}
 # keeps a running total
 totalMaterialCost = 0.0

 print "Material Costs"
 print ""

 # displays relevant information about this material
 print "Lawn Costs"
 print "Length:", quoteData['lawnLength']
 print "Width:", quoteData['lawnWidth']
 # sets 'lawnArea' to be the length x width
 runningTotals['lawnArea'] = quoteData['lawnLength'] *
quoteData['lawnWidth']
 print "Total Area:", runningTotals['lawnArea']
 print "Cost per square metre:", costs['lawnCostPerMetre']
 print "Total Cost:",
 # sets cost to be the area x the cost per metre
 cost = runningTotals['lawnArea'] * costs['lawnCostPerMetre']
 print cost
 # cost is added to the total
 totalMaterialCost += cost

 # same as lawn costs
 print "Patio Costs"
 print "Length:", quoteData['patioLength']
 print "Width:", quoteData['patioWidth']
 runningTotals['patioArea'] = quoteData['patioLength'] *
quoteData['patioWidth']
 print "Total Area:", runningTotals['patioArea']

18

 print "Cost per square metre:", costs['patioCostPerMetre']
 print "Total Cost:",
 cost = runningTotals['patioArea'] * costs['patioCostPerMetre']
 print cost
 totalMaterialCost += cost

 # same as lawn costs
 print "Decking Costs"
 print "Length:", quoteData['deckingLength']
 print "Width:", quoteData['deckingWidth']
 runningTotals['deckingArea'] = quoteData['deckingLength'] *
quoteData['deckingWidth']
 print "Total Area:", runningTotals['deckingArea']
 print "Cost per square metre:", costs['deckingCostPerMetre']
 print "Total Cost:",
 cost = runningTotals['deckingArea'] * costs['deckingCostPerMetre']
 print cost
 totalMaterialCost += cost

 # same as lawn costs
 print "Pond Costs"
 print "Length:", quoteData['pondLength']
 print "Width:", quoteData['pondWidth']
 runningTotals['pondArea'] = quoteData['pondLength'] *
quoteData['pondWidth']
 print "Total Area:", runningTotals['pondArea']
 print "Cost per square metre:", costs['pondCostPerMetre']
 print "Total Cost:",
 cost = runningTotals['pondArea'] * costs['pondCostPerMetre']
 print cost
 totalMaterialCost += cost

 # same as lawn costs except area is not worked out as just the number
is needed
 print "Water Feature Costs"
 print "Number of water features:", quoteData['featureNumber']
 print "Cost per feature:", costs['featureCost']
 cost = costs['featureCost'] * quoteData['featureNumber']
 print "Total Cost:", cost
 totalMaterialCost += cost

 # same as water feature
 print "Lighting Costs"
 print "Number of lights:", quoteData['lightingNumber']
 print "Cost per light:", costs['lightingCost']
 cost = costs['lightingCost'] * quoteData['lightingNumber']
 print "Total Cost:", cost
 totalMaterialCost += cost

 print ""
 print "Total Working Costs:", totalMaterialCost
 print ""

 # total is kept for the number of minutes
 totalLabourMinutes = 0.0
 print "Labour Costs"
 print ""

 print "Lawn labour costs"
 print "Minutes per square metre:", costs['lawnMinutes']
 print "Total area:", runningTotals['lawnArea']

19

 print "Total minutes:",
 # minutes is the total time for the lawn (area x time per metre)
 minutes = costs['lawnMinutes'] * runningTotals['lawnArea']
 print minutes
 # cost is added to labour total
 totalLabourMinutes += minutes

 # same as lawn minutes
 print "Patio labour costs"
 print "Minutes per square metre:", costs['patioMinutes']
 print "Total area:", runningTotals['patioArea']
 print "Total minutes:",
 minutes = costs['patioMinutes'] * runningTotals['patioArea']
 print minutes
 totalLabourMinutes += minutes

 # same as lawn minutes
 print "Decking labour costs"
 print "Minutes per square metre:", costs['deckingMinutes']
 print "Total area:", runningTotals['deckingArea']
 print "Total minutes:",
 minutes = costs['deckingMinutes'] * runningTotals['deckingArea']
 print minutes
 totalLabourMinutes += minutes

 # same as lawn minutes
 print "Pond labour costs"
 print "Minutes per square metre:", costs['pondMinutes']
 print "Total area:", runningTotals['pondArea']
 print "Total minutes:",
 minutes = costs['pondMinutes'] * runningTotals['pondArea']
 print minutes
 totalLabourMinutes += minutes

 # same as lawn minutes (except number not area)
 print "Water feature labour costs"
 print "Minutes per water feature:", costs['featureMinutes']
 print "Number Purchased", quoteData['featureNumber']
 print "Total minutes:",
 minutes = costs['featureMinutes'] * quoteData['featureNumber']
 print minutes
 totalLabourMinutes += minutes

 # same as lawn minutes (except number not area)
 print "Garden lighting labour costs"
 print "Minutes per water feature:", costs['lightingMinutes']
 print "Number Purchased", quoteData['lightingNumber']
 print "Total minutes:",
 minutes = costs['lightingMinutes'] * quoteData['lightingNumber']
 print minutes
 totalLabourMinutes += minutes

 print ""
 print "Total Work (minutes):", totalLabourMinutes
 # minutes converted to hours
 hours = totalLabourMinutes / 60.0
 print "Total Work (hours):", hours
 print "Cost of Labour (per hour):", LABOURPERHOUR
 print "Total Labour Cost",
 # total labour cost is calculated
 totalLabourCost = hours * LABOURPERHOUR

20

 print totalLabourCost

 # all the totals and the grand total are displayed
 print ""
 print "Total Working Costs:", totalMaterialCost
 print "Total Labour Costs:", totalLabourCost
 grandTotal = totalMaterialCost + totalLabourCost
 print "Total to Pay by Customer:", grandTotal
 print ""

procedure if a new quote is added to the system
def newQuote():
 # choice is displayed
 print "1. Add quote for existing client"
 print "2. Add quote for new client"
 menuChoice = raw_input()
 # input is validated (either 1 or 2)
 while menuChoice not in ['1', '2']:
 print "Enter either 1 or 2"
 menuChoice = raw_input()
 # the clientNumber is got by either method
 if menuChoice == '1':
 clientNumber = displayClients()
 else:
 clientNumber = addClient()
 # check to see if the user choose a client
 if not clientNumber:
 print "No client was selected"
 return
 print "Entering a quote for client " + str(clientNumber)
 # enter all the quote data into a dictionary
 quoteData = {}
 # each entry is validated either as float or an int
 # with the prompt to the user and the minimum value
 quoteData['lawnLength'] = getValidFloat("Enter lawn length", 0)
 quoteData['lawnWidth'] = getValidFloat("Enter lawn width", 0)
 quoteData['patioLength'] = getValidFloat("Enter patio length", 0)
 quoteData['patioWidth'] = getValidFloat("Enter patio width", 0)
 quoteData['deckingLength'] = getValidFloat("Enter decking length", 0)
 quoteData['deckingWidth'] = getValidFloat("Enter decking width", 0)
 quoteData['pondLength'] = getValidFloat("Enter pond length", 0)
 quoteData['pondWidth'] = getValidFloat("Enter pond width", 0)
 quoteData['featureNumber'] = getValidInt("Enter number of water
features", 0)
 quoteData['lightingNumber'] = getValidInt("Enter number of lighting
features", 0)
 # this information is added to the database
 try:
 conn = sqlite3.connect(DB)
 c = conn.cursor()
 # todays date is got using this built in function
 today = datetime.date.today()
 # the day, month and year is found out from the date
 quoteDay = today.day
 quoteMonth = today.month
 quoteYear = today.year
 # the primary key is a time in milliseconds (will be unique)
 quoteID = int(time.time())
 # this is a tuple of all the data to be added
 entries = (quoteID, clientNumber, quoteDay, quoteMonth, quoteYear,
quoteData['lawnLength'], quoteData['lawnWidth'], costs['lawnCostPerMetre'],

21

 quoteData['patioLength'], quoteData['patioWidth'],
costs['patioCostPerMetre'],
 quoteData['deckingLength'], quoteData['deckingWidth'],
costs['deckingCostPerMetre'],
 quoteData['pondLength'], quoteData['pondWidth'],
costs['pondCostPerMetre'],
 quoteData['featureNumber'], costs['featureCost'],
quoteData['lightingNumber'], costs['lightingCost'])
 # this is the query to insert all of the data
 c.execute('''INSERT INTO quote(quoteID, clientID, dayOfQuote,
monthOfQuote, yearOfQuote, lawnLength, lawnWidth,
 lawnCostPerM, patioLength, patioWidth,
patioCostPerM, deckingLength,
 deckingWidth, deckingCostPerM, pondLength,
pondWidth, pondCostPerM,
 featureNumber, featuresCostEa, lightingNumber,
lightingCostEa) VALUES(
 ?,?)''',
entries)
 conn.commit()
 c.close()
 except:
 # an error message in case the data couldn't be saved
 print "quote could not be saved to database"
 print "Quote reference number:",
 print quoteID
 displayQuote(quoteData)

validates user input based on type (float) and a minimum value
def getValidFloat(prompt, minValue):
 valid = False
 answer = raw_input(prompt)
 while not valid:
 try:
 # this will cause an error if it is the wrong type and
 # will be False if it is greater than the min value
 if float(answer) >= minValue:
 valid = True
 except:
 answer = raw_input("Enter a valid number")
 # returns the answer in the correct type
 return float(answer)

same as getValidFloat only for integer
def getValidInt(prompt, minValue):
 valid = False
 answer = raw_input(prompt)
 while not valid:
 try:
 if int(answer) >= minValue:
 valid = True
 except:
 answer = raw_input("Enter a valid number")
 return int(answer)

function to add a new client, returns the clientID
def addClient():
 print "Add new client name:"
 # get the client name from user input
 clientName = raw_input()
 # check they have entered something

22

 while not clientName:
 clientName = raw_input("Add a name")
 try:
 conn = sqlite3.connect(DB)
 c = conn.cursor()
 # get the current time in milliseconds to be the primary key (will
be unique)
 clientNumber = int(time.time())
 # SQL to add a new client
 c.execute('''INSERT INTO client VALUES(?,?)''', (clientNumber,
clientName))
 conn.commit()
 c.close()
 # return the primary key
 return clientNumber
 except:
 # error message if database error
 print "could not save new client to database"
 return

function for the user to choose a client (shows all clients)
def displayClients():
 try:
 conn = sqlite3.connect(DB)
 c = conn.cursor()
 # SQL to get all the clients
 c.execute('''SELECT clientID, clientName FROM client''')
 result = c.fetchall()
 c.close()
 clientNumbers = []
 # loops over all clients and stores their primary key in a list
 for client in result:
 print "Client Number: " + str(client[0]) + " Name: " +
client[1]
 # primary key is converted to a string before stored
 clientNumbers.append(str(client[0]))
 clientNumber = raw_input("Choose a client number:")
 # the user input is checked to be in the list of primary keys, if
not it asks again
 while clientNumber not in clientNumbers:
 print "You didn't enter a correct client number"
 clientNumber = raw_input("Choose a client number:")
 # the primary key is returned
 return clientNumber
 except:
 print "couldn't access information from the database"

procedure to display the monthly report information
def monthReport():
 # gets the current month from the built in function
 currentMonth = int(datetime.date.today().month)
 # calls a function to get the chosen month
 monthChosen = displayMonths()
 # makes sure the month is either the current one of earlier (not a
month in the future)
 if monthChosen > currentMonth:
 whatYear = int(datetime.date.today().year) - 1
 else:
 whatYear = int(datetime.date.today().year)
 try:
 conn = sqlite3.connect(DB)

23

 c = conn.cursor()
 # SQL to find all the quotes in the month
 c.execute('''SELECT lawnLength, lawnWidth, patioLength, patioWidth,
 deckingLength, deckingWidth, pondLength, pondWidth,
 featureNumber, lightingNumber FROM quote
 WHERE quote.monthOfQuote=? AND quote.yearOfQuote=?''',
(monthChosen, whatYear))
 result = c.fetchall()
 c.close()
 except:
 print "Couldn't access information from the database"

 # total square metres/number of the different materials
 totalLawn = 0.0
 totalPatio = 0.0
 totalDecking = 0.0
 totalPond = 0.0
 totalFeatures = 0.0
 totalLighting = 0.0
 # loop over the different quotes
 for quote in result:
 # add the totals to the running totals
 totalLawn += quote[0] * quote[1]
 totalPatio += quote[2] * quote[3]
 totalDecking += quote[4] * quote[5]
 totalPond += quote[6] * quote[7]
 totalFeatures += quote[8]
 totalLighting += quote[9]

 # find out the total cost
 totalCost = 0.0

 # use the total square metres of the material and the cost
 # to find the total cost (same for all water feature and lighting
 # are number and not square metre
 print "Lawn total metres:",
 print totalLawn
 cost = totalLawn * costs['lawnCostPerMetre']
 print "Lawn total monthly value:",
 print cost
 totalCost += cost

 print "Patio total metres:",
 print totalPatio
 cost = totalPatio * costs['patioCostPerMetre']
 print "Patio total monthly value:",
 print cost
 totalCost += cost

 print "Decking total metres:",
 print totalDecking
 cost = totalDecking * costs['deckingCostPerMetre']
 print "Decking total monthly value:",
 print cost
 totalCost += cost

 print "Pond total metres:",
 print totalPond
 cost = totalPond * costs['pondCostPerMetre']
 print "Pond total monthly value:",
 print cost

24

 totalCost += cost

 print "Water Feature total:",
 print totalFeatures
 cost = totalFeatures * costs['featureCost']
 print "Water Feature total monthly value:",
 print cost
 totalCost += cost

 print "Lighting total:",
 print totalLighting
 cost = totalLighting * costs['lightingCost']
 print "Lighting total monthly value:",
 print cost
 totalCost += cost

 # display the total cost
 print "Total Monthly Value:",
 print totalCost

function for user to choose the correct month
def displayMonths():
 # dictionary linking month number to month name
 months = {'1': 'Jan', '2': 'Feb', '3': 'Mar', '4': 'Apr', '5': 'May',
'6': 'Jun',
 '7': 'Jul', '8': 'Aug', '9': 'Sep', '10':'Oct', '11': 'Nov',
'12': 'Dec'}
 # print out all the numbers and names
 for num, name in months.iteritems():
 print num + ": " + name
 monthChosen = raw_input("Enter the number of a month (1-12)")
 valid = False
 while not valid:
 # make sure the user has chosen one of the correct numbers
 if monthChosen in months.keys():
 valid = True
 else:
 monthChosen = raw_input("Make sure you enter a number (1-12)")
 # return the number (int) of the month chosen
 return int(monthChosen)

the 'main' part - where the program starts
if __name__ == '__main__':
 # check the database exists and if not create the tables
 runFirstTime()

 # get all the costs from the external file
 costs = getCostsFromFile(MATERIALFILE)

 # carry on going round (the user exits by choosing 4)
 while True:
 # display the main menu
 displayMenu()
 menuChoice = raw_input()
 # validate the user input as being 1-4
 while menuChoice not in ['1','2','3','4']:
 displayMenu()
 menuChoice = raw_input("Enter a number 1-4")
 # choose the correct procedure based on the user input
 if menuChoice == '1':
 searchQuote()

25

 elif menuChoice == '2':
 newQuote()
 elif menuChoice == '3':
 monthReport()
 else:
 # if they choose 4 then exit
 print "system closing"
 sys.exit()

26

Programming Techniques Used

Different Programming Techniques
Using libraries and built in functions

I’ve used built in functions but also had to use these libraries. Sys is for the system exit function, csv
is to read a CSV file, sqlite3 means I can use an sqlite database and datetime and date are needed for
when I need to find out the current date.

import sys
import csv
import sqlite3
import datetime
import time

Use of constants

My program has three constants at the start:

LABOURPERHOUR = 16.49
DB = 'gardening.db'
MATERIALFILE = 'materials.txt'

I have kept them in capitals to make it obvious they are constants. They can be updated at the top
of the program and it will change them everywhere.

Use of relational database (create tables, add data, select data)

I am using sqlite for my database. This has the advantage that I don’t have to configure it with
passwords and make connections as it is just a file in the same folder. The file is called
gardening.db. I use two related tables: client and quote. Both of these tables are implemented
in the same way as the design.

I use the create table if not exists command at the start of my program so it doesn’t create an error
if the database already exists.

This is an example query searching for quotes by the quoteID:

c.execute('''SELECT lawnLength, lawnWidth, lawnCostPerM, patioLength,
patioWidth, patioCostPerM, deckingLength, deckingWidth, deckingCostPerM,
pondLength, pondWidth, pondCostPerM, featureNumber, featuresCostEa,
lightingNumber, lightingCostEa FROM quote WHERE quoteID=?''',
(quoteNumber,))

 After the query is made the result is put into a list. If more than one result is returned then the
results are in a two dimensional list. This is an example of where I have updated the database (with
new clientNumbers and clientNames):

c.execute('''INSERT INTO client VALUES(?,?)''', (clientNumber, clientName))

27

Error catching

Databases can make errors and errors can happen in my code, particularly if the user input is not
correct. I have used try-except statements to catch any errors, such as:

try:
 if float(answer) >= minValue:
 valid = True
except:
 answer = raw_input("Enter a valid number")

In this example if answer is not able to convert to type float then an error is called (and the user will
be prompted again).

Reading data from an external file

All the material costs are stored in a file called materials.txt, this is read into the program
every time it starts. To do this I used the CSV library which makes it an easier task:

def getCostsFromFile(filename):
 costs = {}
 try:
 fileReader = csv.reader(open(MATERIALFILE, 'rb'))

 for row in fileReader:
 costs[row[0]] = float(row[1])
 return costs
 except:
 print "make sure materials.txt exists and is in the correct format"
 sys.exit()

Every line is read in and a dictionary called costs is set with the key being the material cost and the
value being the amount. If the file cannot be read it is probably because it is not in the correct
format so an error message is displayed saying this.

Use of functions and procedures

I have used 14 functions and procedures in my code. This is an example of a function that takes two
parameters and returns a float:

def getValidFloat(prompt, minValue):
 valid = False
 answer = raw_input(prompt)
 while not valid:
 try:
 if float(answer) >= minValue:
 valid = True
 except:
 answer = raw_input("Enter a valid number")
 return float(answer)

Validation of user input

28

The example above shows how user input is validated both by making sure it is in a suitable type
(float) and that it is above a minimum value. All of my user input is validated and if the user enters
an unacceptable value they are prompted again and again until they do.

Lists and dictionaries

I have used both of these data structures in my program. Costs is an example of a dictionary (see
Reading Data from an External File) where values can be found by entering their key. Lists are like
Python’s arrays, every time the database queries return a value they are in lists and so their values
are accessed using an index, like this:

totalLawn += quote[0] * quote[1]
totalPatio += quote[2] * quote[3]
totalDecking += quote[4] * quote[5]
totalPond += quote[6] * quote[7]

Parts Working Together
Different Functions and Procedures

This diagram shows how my functions and procedures work together along with the database and
materials file to make the whole system work:

The file materials.txt is only used once at the start of the program (after the database is checked to
see if it is created). After that the displayMenu function is called, this is where the program returns
after every user action until the user chooses to exit the program. The three main sub-menus of
displayMenu are searchQuote, newQuote and monthReport. searchQuote first of all calls the
showAllQuotes function that queries the database and displays all of the quote numbers and client
names, the user chooses a quote number and this is passed as a parameter to the
getQuoteFromNumber function that returns all of the details to searchQuote, finally the

29

displayQuotes function prints all of the information to the screen. newQuote gives the user the
option to choose either an existing client (using the displayClients function) or to add a new client
(using the addClient function). The rest of the newQuote prompts the user to enter all of the
gardening information before saving this to the database and displaying it using the displayQuotes
function. Both searchQuote and newQuote use the getValidInt and getValidFloat function to check if
the user has entered data in the valid type and range. Finally the monthReport function calls the
displayMonths to allow the user to choose a correct month, this works differently from the other
two sub-menus and so doesn’t share any functions with them.

Coded Efficiently
Use of relational database

I could have saved my data as an external text file (and actually did that for the material costs but
that was because the brief said they may need to be updated and I thought that would be the
easiest way without having to go into the program, really this could have been included in the
relational database too but it might mean I would have to be careful with security and access to the
database), but I chose a relational database instead. This is because the data is kept efficiently
because I don’t need to repeat the client information for every quote as I can just use the clientID as
a foreign key in the quotes table. Also this is efficient because the database is very quick at finding
and search for data, particularly if compared to having to read in data from an external file and then
write my own searches using this data. Using SQL queries instead of just writing my own also means
they are more likely to work. I have used SQLite which I don’t think is the fastest database available
and probably isn’t as quick as something like MySQL but for this project it doesn’t make a big
difference because it won’t ever hold a huge amount of data and it also has the advantage that it
doesn’t need usernames and passwords to access it because it is just a file in the same directory as
my Python program. My queries all just make simple matching queries and so they should all run OK
even with lots of data in the tables.

I chose not to save the calculated quote data in the database even though this would make the
monthly reports function run quicker (and also slightly speed up the showQuotes function, although
not so that the user would notice). The reason for this is because I also save the information for how
much the materials cost – this means that the quote could use the old data for the quote if the costs
have been updated but would the current data for the monthly reports. My program doesn’t
actually do this although the database is set up to do it this way and it could be done if needed.

Functions and Procedures

All of my functions run quite quickly as I don’t have many nested loops that could make my program
run more slowly.

Although using functions does not make my program run any faster it does mean that I have had to
use less code because I can reuse functions whenever they are needed (the getValidFloat is a good
example of this because it is used throughout, also the displayQuote is a long procedure that is
called in more than one place). This means easier to read code and also easier to spot mistakes.

30

Data Structures
I have mainly used four different data structures in my code: lists (a bit like arrays in other
languages), dictionaries, a CSV file and a relational database.

This is an example of using a list to check if user input is not a member:

while menuChoice not in ['1','2','3','4']:

Lists hold data in order so they are used by the built in functions for the different parts of a row in a
CSV file like this:

 fileReader = csv.reader(open(MATERIALFILE, 'rb')
 for row in fileReader:
 costs[row[0]] = float(row[1])

Lists are also easy to use in for loops in Python. Lists are also used by the Python SQLite function
that gets the result of a query (all of the parts of SELECT are the different elements in the list in the
order that they were written). When more than one result is returned then Python uses lists of lists
and so I use a for loop to go through one list at a time like this:

 result = c.fetchall()
 for quote in result:
 print "Quote Number:",
 print quote[0]

I use lists quite a lot when I want to check if a choice is not in a list of values like this:

 while menuChoice not in ['1', '2']:
 print "Enter either 1 or 2"

I use lists when I want to hold data in an order and dictionaries when I need to access values based
on a key. For instance the months of the year are stored as a dictionary because I need to number
of the month to query the database:

 months = {1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun',
 7: 'Jul', 8: 'Aug', 9: 'Sep', 10:'Oct', 11: 'Nov', 12: 'Dec'}

This means that if the user enters 3 I can use months[3] to find the value ‘Mar’. I could have used a
list for this but because Python lists start at 0 and not 1 I didn’t want to complicate things by always
having to add 1 to the index to get the right month.

I’ve explained my reasons for using a relational database in the previous section. My database is
almost the same as it was in my design although it uses the types int, real and text instead of int,
float, text and date. I started to use date but found it very difficult to deal with and so I changed it to
three different integers for the day, month and year of the quote (this also makes it easier to check
what month the quote was in). The primary keys for both the client and quote tables are the integer
time (in milliseconds I think) that they were entered into the database, this means that no two will
have the same because it is impossible to enter all of the data that quickly.

Robust Solution
User validation

31

All user input in my code is validated. The getValidInt and getValidFloat functions make
sure numbers are entered in the correct format and with at least a minimum value. If entries are
not valid then the program prompts the user and loops (normally with a while loop) until a valid
entry is made.

Error Catching

As I mentioned earlier my program uses try-except statements that ‘catch’ when an error is
detected. This way my program doesn’t crash but an error message is printed to the screen and the
user is taken back to the previous menu.

Example

This is the getValidFloat function:

def getValidFloat(prompt, minValue):
 valid = False
 answer = raw_input(prompt)
 while not valid:
 try:
 if float(answer) >= minValue:
 valid = True
 except:
 answer = raw_input("Enter a valid number")
 return float(answer)

In the third line the user is prompted to enter a number (the prompt is one of the parameters). The
user could do four things here:

1. Enter a number in the correct format (float) and above or equal to the minimum value
(minValue).

2. Enter a number in the correct format but below the minimum value.
3. Enter something in an incorrect format (in which case the minimum value doesn’t matter).
4. Not enter anything.

The Boolean value valid is set to False and the while loop will continue until the user enters a valid
entry (choice 1). If they did choice 2 then the Boolean conditional float(answer) >= minValue
would be False and so valid would not be set to true, if they did choice 3 or 4 then
float(answer)would cause an error because it wouldn’t be able to work and would mean the try-
except statement would print an answer. I have just realised that choice 2 would make the loop go
on forever so I have changed the function to say the following:

def getValidFloat(prompt, minValue):
 valid = False
 answer = raw_input(prompt)
 while not valid:
 try:
 if float(answer) >= minValue:
 valid = True
 else:
 answer = raw_input("Make sure the number is at least " +
str(minValue))
 except:
 answer = raw_input("Enter a valid number")

32

 return float(answer)

Now if the user enters a number below the minimum value the error message “Make sure the
number is at least minValue” and then prompts them to enter another one.

Most of the user input is numbers but the user also has to enter the client name, to make sure they
don’t leave this blank I have used this code:

 clientName = raw_input()
 while not clientName:
 clientName = raw_input("Add a name")

If they enter nothing then Python thinks that clientName is like a Boolean value False and so a while
loop will continue until they enter something.

33

Testing & Evaluation

Test Plan & Evidence of Tests
Num
ber

Description Test Input Data/User
Action

Expected
Outcome

Actual
Result

Action
Required

1.1 Opening
menu
works

Menu
choice 1
works

1 Quote
number is
prompted

As
expected

No

1.2 Menu
choice 2
works

2 The two
client sub
menus are
displayed

As
expected

No

1.3 Menu
choice 3
works

3 Months of
the year are
displayed
(number
then month)

All
displayed
although
not in the
obvious
order

Re-order
months by
numbers
(1 before
11)

1.4 Menu
choice 4
works

4 Closing
message
displayed
and program
exits

As
expected

No

2.1 Search by
quote
number
works

Accepts
correct
quote
number

2.2 Rejects
incorrect
quote
number

2.3 Rejects
non-
numeric
data

5.1 Adding
quote
works

Adding a
quote for a
new client

Client Name: Charlie
North, lawn length
10, lawn width 8,
patio length 0, patio
width 0, decking
length 5, decking
width 8, pond length
2, pond width 4,
water features 1,
garden lights 0

New client
Charlie
North is
stored in the
database
and the total
working
costs are
£2220.00,
total labour
costs are
£884.96 and
the total to

As
expected
although
all
currency is
displayed
as a long
float
number

Round
currency
to two
decimal
places

34

pay is
£3104.96 all
of which is
stored in the
database

5.2 Adding a
quote for
an existing
client

Client Name: Charlie
North, lawn length
10, lawn width 8,
patio length 0, patio
width 0, decking
length 5, decking
width 8, pond length
2, pond width 4,
water features 1,
garden lights 0

A list of
clients is
displayed
and it
accepts the
choice of
Charlie
North and
the total
working
costs are
£2220.00,
total labour
costs are
£884.96 and
the total to
pay is
£3104.96 all
of which is
stored in the
database

As
expected
although
all
currency is
displayed
as a long
float
number

Round
currency
to two
decimal
places

6.1 Monthly
report
works

Two quotes
for May are
selected

Month chosen is May
(5)

The two
quotes in
the database
both have
labour of
£2220.00 so
the total
should be
£4440.00

As
expected

No

7.1 Changing
external
file

Double all
costs

New materials.txt is
shown in the image
(all costs are
doubled)

Restart the
program and
new quote is
entered with
the same
figures as
before. The
costs have
doubled so
the total
material cost
should be
£4440.00

As
expected

No

1.1: Quote number prompted

35

1.2: The two quote submenu options are displayed:

1.3: Months displayed

1.4: System closes (grey square means program not running)

5.1: Adding a new client and a new quote

36

37

5.1: New client added to database:

5.1: New quote added to database:

5.2: Adding a quote for an existing client:

38

39

5.2: New quote added to database:

6.1: Monthly total (for May):

40

6.1: Change to the external file (original materials.txt):

6.1: Change to the external file (new materials.txt):

41

6.1: Result of doubling the material cost:

Remedial Action
Test 1.3 shows that I should order the months to be displayed in the right order. I have changed the
keys of the dictionary to be integers and altered some of the code so this would work:

42

The months are now displayed like this:

Tests 5.1 and 5.2 show that I should display currency in two decimal places.

This code shows a floating number to two decimal places:

print("£%.2f" % totalMaterialCost)

And so I have changed every part of the function displayQuote to display floats like this. The result is
this (only the last part shown):

43

Evaluation

My program works completely and the remedial action means it now displays currency and months
correctly too. My solution is robust as the user can enter anything and the program will just keep
going and ask them again until they get it right. The obvious next step would be to use a GUI but I
thought this is too complicated for this project and I wanted to focus on the data and the processing.

My database works and holds information effectively. I have used sqlite which does not require any
authorisation (neither does my program) so if this was to be a program used by an actual company
then more security would be needed. Also more details on the clients (not just their names) would
have to be stored. I use a long integer for the primary key which is a bit annoying because the user

44

has to enter a long number exactly to get the right answer, this could easily be changed to a smaller
number.

My solution allows the user to search for quotes and client names so the user doesn’t have to
remember all of them. It does this by querying the database. If the user adds a new client or quote
then the database is updated. All of the processing is done every time – this is slightly inefficient
(although it is not much processing) but it means the data can be kept up to date with the details in
the external file.

The external file is a CSV and so can be easily read and understood by another user (without having
to understand a relational database). If the data is in an incorrect form then it will not be loaded
and the program will exit, this is deliberate because I do not want my program to use bad data.

The user interface is what lets this project down a bit but like I said this would be the first thing to
change if I extended this program. The functions and procedures I have used wouldn’t make this
difficult.

