Landscape Gardening
AQA GCSE Computer Science
Controlled Assessment

Design of Solution

Explanation of the Problem
| need to create a solution to the following problem:

A gardening company creates gardens using the following materials:

e lawn

e Concrete Patio

e Wooden Decking

e Ponds (rectangular)
e \Water Features

e Garden Lights

Each of these materials has an associated cost (for lawn, concrete, decking and ponds this is a cost
per square metre, for water features and lights it is the cost per unit). Each one also has a set time
to install (again, the first four is timed per square metre and the last two have a set time per unit).
Labour is charged at a cost per hour.

The company wants to use these costs to work out quotes for clients and also to save these quotes
for later use. They have a specific way they would like the quotes to appear.

They want the costs of the materials to be stored in an external file to allow the user to change them
when needed.

The first task includes working out subtotals for the quote and then the final cost. Parts 1-4 are very
similar (input required is the length and the width, a constant is the cost per square metre and the
output is the total cost), and parts 5-6 are similar (input is number of units, constant is cost per unit
and output is the total cost). The total labour cost is the number of hours required (calculated by
the number of square metres for each of 1-4 multiplied by the time in minutes and the number of
units for 5-6 multiplied by the time in minutes). The lengths and widths are positive real numbers
and the number of units is a positive integer (all can be 0).

The second task requires the system to save quotes, this will obviously require some sort of
database. The database has two tables: the client and the details of the quote (because a client can
have more than one quote but a quote belongs to only one client). The client will need a primary
key to uniquely identify them, as will the quote.

The third task asks for the data on the cost of raw materials to be stored in an external file. This
could be a database but | assume that | should use a text file (this could be so that someone could
change the data without having access to the quotes). This will require a format such as CSV for the
file and the program will have to read this information every time it is started. There are 6 different
raw materials given earlier.

The fourth task is about preparing monthly reports on the total amount and cost of all the raw
materials used. The user would type in a number (the example given is both “June” or 6 for June)

2

and they would see all of the material used in June. It isn’t clear if this is for every June or just for
the most recent one so | will make it just for the month that has passed most recently (i.e. if it is May
now (2012) and month 5 was searched for then the results from May 2011 would be shown). This
will involve the quotes in the database stored with two dates: one for when the quote was given
(this will help with search in task 2) and one for when the work is to be done (this is for the monthly
material report). The first date should be required but the second date should only be only be put in
if it is known (if it isn’t then it should be null), so jobs with no second date set should not be included
in the material monthly report. There is a set format for the monthly report data to be presented.

Overview Plan
The database needs to have the following information:

client

clientlD Integer (primary key) Required
clientName Text (up to 100 characters) Required
quote

quotelD Integer (primary key) Required
clientlD Integer (foreign key) Required
dateOfQuote Date Required
dateOflob Date Not Required
lawnLength Float Required
lawnWidth Float Required
lawnCostPerM Float Required
patioLength Float Required
patioWidth Float Required
patioCostPerM Float Required
deckinglLength Float Required
deckingWidth Float Required
deckingCostPerM Float Required
pondLength Float Required
pondWidth Float Required
pondCostPerM Float Required
featureNumber Integer Required
featuresCostEa Float Required
lightingNumber Integer Required
lightingCostEa Float Required

This means that if the cost of the material changes then the cost of the quote will not change too.

The system will work together like this:

\ Text file
with
/ material

Lo

Search for Quote Add Quote Monthly Report

Database with

Display Quote Display Report

client and quote
l l data

Where the red arrows show how you can get between the various parts of the program and the blue
arrows showing how the data flows.

The opening menu needs to have four choices:

Search for a quote
Add quote
Monthly report
Exit

P wnNPe

The brief doesn’t say how the quotes are to be searched so for my system | am going to allow
searching by client name and searching by date of quotation as well as the quote reference number
(clientName, dateOfQuote and quotelD in the quote table). Because the cost of the raw material
can change | am going to recalculate the cost of the work every time using the price of raw materials
stored in the database. | could use the database to store all of the information that has been
calculated but | want to leave it like this so the quote can be easily changed (eg the length of the
lawn can be changed but the costs and area won’t need to be).

The search for quote requires the user to enter a quote number.

The information returned will be a combination of the working cost and labour cost tables seen in
the specimen.

The add quote menu will need the following options:

1. Existing client
2. Add new client

If add new client is selected then the user should be prompted to enter their name and will be
returned to this menu, if existing client is selected then the user will be presented with a list of all
the clients in alphabetical order and will need to choose the correct number, e.g.:

1. Adams, 000223

2. Babledy, 000144
3. Carnock, 001003
4.

This isn’t suitable if the program will be used for hundreds of clients but it will work on a small scale.

Once the user has selected their client they will need to enter the following information, prompted
one after the other (if nothing is entered then the user will be prompted before a zero will be
entered). The information to be entered will be:

Lawn Length

Lawn Width

Patio Length

Patio Width

Decking Length

Decking Width

Pond Length

Pond Width

. Number of Water Features
10. Number of Lights

11. Date of job (can be left blank)

© W NOU R W R

Entries 1-8 will be validated as positive floats and entries 9 and 10 will be validated as positive
integers.

As soon as the quote has been entered (i.e. the 10" item is finished) the quote will be processed and
will display on the console. The opening menu will be asked again.

The monthly report menu will list the 12 months of the year before the current month (the brief
said that you can enter either the name of the month or the number of the month). When the user
chooses the number 1-12 (validated as only one of those numbers) then the report for that month is
generated.

Proposed Solution
The overall solution will be as follows:

check to see if the database is created (first time only)
SQL will check if tables already exist
RUNFIRSTTIMEQ

get the materials cost from the external file
and store them in a dictionary

costs « GETCOSTSFROMFILE (“materials.txt”)
labourCostPerHour « 16.49 # a constant

loop until the user chooses EXIT

WHILE true
DISPLAYMENUQO) # display the main meu
menuChoice ~ INPUT # user input will be validated (1-4)

CASE menuChoice OF # choose the correct option
1: SEARCHQUOTEQ)
2: NEWQUOTEQ)
3: MONTHREPORT(Q)
4: EXITO
ENDCASE
ENDWHILE

PROCEDURE DISPLAYMENUQO
displays the four choices shown earlier
ENDPROCEDURE

PROCEDURE SEARCHQUOTE(Q)
OUTPUT “Enter quote number”
quoteNumber « INPUT # user input will be prompted and validated
quoteData « GETQUOTEFROMNUMBER (quoteNumber) # quoteData is a dictionary
DISPLAYQUOTE(quoteData) # procedure to display to console
ENDPROCEDURE

search the database and get the quote details from the quote number
results are stored in a dictionary datastructure
FUNCTION GETQUOTEFROMNUMBER(quoteNumber)

OPENDATABASE(db, user, pass) # open the database connection
details < QUERYDB (query) # SQL query (see later)
IF details # NULL
THEN
RETURN details
ELSE
RETURN none # return “none” if search failed
ENDFUNCTION

process and print the quote information
PROCEDURE DISPLAYQUOTE(quoteData)
totalMaterialCost « 0
OUTPUT “Material Costs”

this is for lawn ...

OUTPUT ““Lawn Costs™

OUTPUT “length:”

OUTPUT quoteData[“lawnLength”]

OUTPUT “width:”

OUTPUT quoteData[“lawnWidth™]

calculate total area

save it iIn a dictionary for use later (same for patio, pond and decking)
runningTotals[“lawnArea’] — quoteDatal‘lawnLength’] * quoteDatal[‘lawnWidth’]
OUTPUT “total area:”

OUTPUT runningTotals[“lawnArea’]

OUTPUT ““cost per square metre:”

OUTPUT costs[“lawnCostPerMetre”]

OUTPUT “total cost:”

calculate total cost using area and the costs dictionary

cost « runningTotals[“lawnArea’] * costs[“lawnCostPerMetre’]

OUTPUT cost

totalMaterialcCost —~ totalMaterialCost + cost

... patio, decking and pond is identical except for titles

this is for the water features ...
OUTPUT “Water Features”

OUTPUT “number:”’

OUTPUT quoteData[“featureNumber”]

OUTPUT “cost per feature:”

OUTPUT costs[“featureCost’]

cost « costs[“featureCost’] * quoteData[“number”]
OUTPUT cost

totalMaterialcCost « totalMaterialCost + cost

... lighting is identical except for titles

OUTPUT “total working costs:”
OUPUT totalMaterialCost

next work out the labour costs

totalLabourMinutes « 0
OUTPUT ““Labour Costs”

this is for the lawn...

OUTPUT “Minutes per metre square:”

OUTPUT costs[“lawnMinutes”]

OUTPUT “total area”

OUTPUT runningTotals[“lawnArea’]

OUTPUT “total minutes:”

minutes — costs[‘lawnMinutes’] * runningTotals|[‘lawnArea’]
OUTPUT minutes

totalLabourMinutes — totallLabourMinutes + minutes

...patio, decking and pond is identical except for titles

this is for the water features...

OUTPUT “Minutes per water feature:”

OUTPUT costs[“featuresMinutes”]

OUTPUT “number purchased:”

OUTPUT quoteData[“featureNumber”]

OUTPUT “total minutes:”

minutes — costs[“featuresMinutes’] * quoteData[“featureNumber”]
OUTPUT minutes

totalLabourMinutes ~ totallLabourMinutes + minutes

_..lighting is identical except for labels

OUTPUT “Total Work (minutes):”

OUTPUT totallLabourMinutes

OUTPUT “Total Work (hours):”

hours < totalLabourMinutes / 60

OUTPUT hours

OUTPUT “Cost of Labour (per hour)”

OUTPUT labourCostPerHour

OUTPUT “Total Labour Cost”

totalLabourCost « totalLabourMinutes * labourCostPerHour
OUTPUT totalLabourCost

finally output the grand totals

OUTPUT “Total working costs:”

OUTPUT totalMaterialCost

OUTPUT “Total labour costs:”

OUTPUT totalLabourCost

OUTPUT “Total to Pay by Customer:”’

OUTPUT totalMaterialCost + totallLabourCost
ENDPROCEDURE

PROCEDURE NEWQUOTEQ)
OPENDATABASE(db, user, pass)

displays the two choices shown earlier
DISPLAYNEWQUOTEMENUQ)

menuChoice ~ INPUT # user input will be validated (1-2)
IF menuChoice = 1 # user chooses existing client
THEN

clientNumber ~ DISPLAYCLIENTS() # display the whole list
ELSE # user adds new client

OUTPUT “add new client name”

ClientName ~ INPUT

clientNumber — QUERYDB (query) # SQL query to save new client
ENDIF

now get all of the information about the garden plan

OUTPUT “Enter lawn length:”

save this as a dictionary that can be used by the display quote proc
quoteData[‘lawnLength’] « INPUT # validate as < 0

OUTPUT “Enter lawn width:”

quoteDatal[‘lawnWidth’] « INPUT # validate as < 0

...this follows in the same way for all the remaining choices

ask when the job will be done but can be blank
OUTPUT “Enter when job to be done (can leave blank)”
jobDone « INPUT

save all the information to the database

IF jobDone
THEN

QUERYDB(query) # SQL query including jobDone
ELSE

QUERYDB(query) # same but without jobDone
ENDIF

display the quote information
DISPLAYQUOTE(quoteData)
ENDPROCEDURE

PROCEDURE DISPLAYCLIENTSQ)
get all the clients names and clientlDs
save the information in a two dimensional array
OPENDATABASE(db, user, pass)
clients « QUERYDB(query) # SQL query to get all clientIDs and clientNames
FOR i « 1 TO LEN(clients)
OUTPUT i
OUTPUT clients[i][2] # the client name
OUTPUT clients[i][1] # the client ID
ENDFOR
OUTPUT ““choose a number™
choice ~ INPUT # validate this as 1 — LEN(clients)
RETURN clients[choice][1]
ENDPROCEDURE

PROCEDURE MONTHREPORT()
currentMonth « GETCURRENTMONTH () # use a built in function for this
display all the months like 1. January, 2. February,...
DISPLAYMONTHS
monthChosen — INPUT
work out if it will be last year’s month or this year’s month
IF monthChosen 2 currentMonth
THEN

year = CURRENTYEAR() — 1 # use a built in function
ELSE

year = CURRENTYEARQ)
ENDIF

get the monthly totals
OPENDATABASE(db, user, pass)
totalQuotes — QUERYDB(query) # query with of all the quotes in month, year
keep running totals on all materials
totallawn « O
totalPatio « O
totalDecking «~ 0
totalPond ~ 0
totalFeatures « 0
totallLighting « O
iterate over the query results
FOR i « 1 TO LEN(totalQuotes)
totallawn ~ totallawn +
(totalQuotes[i][“lawnWidth”]*totalQuotes[i][“lawnLength’])
...same for patio, decking and ponds
totalFeatures — totalFeatures + totalQuotes[i][“features’]
...same for lighting
ENDFOR

keep the total cost
totalCost « O

display the results

OUTPUT ““Lawn total metres:”

OUTPUT totallLawn

OUTPUT “Lawn total monthly value:”

cost « totalLawn * costs[“lawn”]

OUTPUT cost

totalCost « totalCost + cost

...exactly the same for the others apart from the labels

display total costs
OUTPUT “Total Monthly Value:”
OUTPUT totalCost

ENDPROCEDURE

The external text file with the material costs will be called materials.txt and will be a CSV file with

headers of material and the price per m? the initial file will look like this:
lawn,15.50
patio,20.99
decking,15.75
pond,20.00

feature,150.00
lights,5.00

The SQL queries are:
SELECT * FROM quote WHERE quote.quotelD = ?

SELECT * FROM quote WHERE quote.quoteDate = ?

SELECT * FROM quote WHERE quote.clientlID = ?

INSERT INTO client(client.name) VALUES ?

INSERT INTO quote(quote..., client.clientlD) VALUES (?...,7)
SELECT client.clientlD, client.clientName FROM client

SELECT quote.lawnLength, quote.lawnWidth, quote.patiolLength... FROM quote
WHERE quote.dateOfQuote 2 “01/month/year” AND quote.dateOfQuote <
“01/month+1/year”

10

Solution Development

Needs of the User

This is the program being used to do a variety of things (it is not complete but this can be seen in the
testing section), the black text is the computer output and the highlighted red text is the user input.
This shows the menus for the user and the calculations as well as showing data that is saved to and
read from the database:

1. Search for a quote
2. Add quote

3. Monthly report

4. Exit

1. Add quote for existing client
2. Add quote for new client

Add new client name:

Entering a quote for client 1338309698
Enter lawn length6

Enter lawn width4

Enter patio lengthO

Enter patio widthO

Enter decking lengthO

Enter decking widthO

Enter pond length3

Enter pond width2.5

Enter number of water features?2
Enter number of lighting featuresb
Quote reference number: 1338309719
Material Costs

Lawn Costs

Length: 6.0

width: 4.0

Total Area: 24.0

Cost per square metre: 15.5
Total Cost: 372.0

Patio Costs

Length: 0.0

Width: 0.0

Total Area: 0.0

Cost per square metre: 20.99
Total Cost: 0.0

Decking Costs

Length: 0.0

Width: 0.0

Total Area: 0.0

Cost per square metre: 15.75
Total Cost: 0.0

Pond Costs

Length: 3.0

Width: 2.5

Total Area: 7.5

Cost per square metre: 25.0
Total Cost: 187.5

11

Water Feature Costs

Number of water features: 2
Cost per feature: 150.0
Total Cost: 300.0

Lighting Costs

Number of lights: 5

Cost per light: 5.0

Total Cost: 25.0

Total Working Costs: 884.5
Labour Costs

Lawn labour costs

Minutes per square metre: 20.0
Total area: 24.0

Total minutes: 480.0

Patio labour costs

Minutes per square metre: 20.0
Total area: 0.0

Total minutes: 0.0

Decking labour costs

Minutes per square metre: 30.0
Total area: 0.0

Total minutes: 0.0

Pond labour costs

Minutes per square metre: 45.0
Total area: 7.5

Total minutes: 337.5

Water feature labour costs
Minutes per water feature: 60.0
Number Purchased 2

Total minutes: 120.0

Garden lighting labour costs
Minutes per water feature: 10.0
Number Purchased 5

Total minutes: 50.0

Total Work (minutes): 987.5

Total Work (hours): 16.4583333333
Cost of Labour (per hour): 16.49
Total Labour Cost 271.397916667

Total Working Costs: 884.5
Total Labour Costs: 271.397916667
Total to Pay by Customer: 1155.89791667

1. Search for a quote

2. Add quote

3. Monthly report

4. Exit

Enter the quote numberfEEFE]
Invalid quote number

Quote Number: 1338309515
Client Name: Andrew Zachary

Quote Number: 1338309719
Client Name: Bob Yeazley

Enter the quote numberjkeiisEioleluls)

12

Material Costs

Lawn Costs

Length: 10.0

Width: 8.0

Total Area: 80.0

Cost per square metre: 15.5
Total Cost: 1240.0

Patio Costs

Length: 5.0

Width: 5.0

Total Area: 25.0

Cost per square metre: 20.99
Total Cost: 524.75

Decking Costs

Length: 0.0

Width: 0.0

Total Area: 0.0

Cost per square metre: 15.75
Total Cost: 0.0

Pond Costs

Length: 3.0

Width: 4.0

Total Area: 12.0

Cost per square metre: 25.0
Total Cost: 300.0

Water Feature Costs

Number of water features: 3
Cost per feature: 150.0
Total Cost: 450.0

Lighting Costs

Number of lights: 10

Cost per light: 5.0

Total Cost: 50.0

Total Working Costs: 2564.75
Labour Costs

Lawn labour costs

Minutes per square metre: 20.0
Total area: 80.0

Total minutes: 1600.0

Patio labour costs

Minutes per square metre: 20.0
Total area: 25.0

Total minutes: 500.0

Decking labour costs

Minutes per square metre: 30.0
Total area: 0.0

Total minutes: 0.0

Pond labour costs

Minutes per square metre: 45.0
Total area: 12.0

Total minutes: 540.0

Water feature labour costs
Minutes per water feature: 60.0
Number Purchased 3

Total minutes: 180.0

Garden lighting labour costs
Minutes per water feature: 10.0

Number Purchased 10
Total minutes: 100.0

Total Work (minutes): 2920.0
Total Work (hours): 48.6666666667
Cost of Labour (per hour): 16.49
Total Labour Cost 802.513333333

Total Working Costs: 2564.75
Total Labour Costs: 802.513333333
Total to Pay by Customer: 3367.26333333

1. Search for a quote

2. Add quote

3. Monthly report

4. EXit

11: Nov

10: Oct

12: Dec

1: Jan

3: Mar

2: Feb

5: May

4: Apr

7- Jul

6: Jun

9: Sep

8: Aug

Enter the number of a month (1-12)F
Lawn total metres: 104.0

Lawn total monthly value: 1612.0
Patio total metres: 25.0

Patio total monthly value: 524.75
Decking total metres: 0.0

Decking total monthly value: 0.0
Pond total metres: 19.5

Pond total monthly value: 487.5
Water Feature total: 5.0

Water Feature total monthly value: 750.0
Lighting total: 15.0

Lighting total monthly value: 75.0
Total Monthly Value: 3449.25

1. Search for a quote

2. Add quote

3. Monthly report

4. EXit

system closing

Annotated Code

This is the complete code for my project, it is annotated with comments.
import sys
import csv

import sqlite3
import datetime

14

import time

LABOURPERHOUR = 16.49
DB = "gardening.db*
MATERIALFILE = "materials.txt”

def runFirstTime():

try:

conn = sqlite3.connect(DB)

c = conn.cursor()

query = """CREATE TABLE IF NOT EXISTS client (
clientID int, clientName text, primary

key(clientID))"""
c.execute(query)
conn.commit()

query = """CREATE TABLE IF NOT EXISTS quote (

client(clientlD))"""
c.execute(query)
conn.commit()
c.close()
except:
pass

def getCostsFromFile(filename):

costs = {}
try:

15

quotelD int,
clientlID int,
dayOfQuote int,

monthOfQuote int,

yearOfQuote int,

dayOfJob int,

monthOfJob int,

yearOfJob int,

lawnLength real,
lawnWidth real,
lawnCostPerM real,
patiolLength real,
patioWidth real,
patioCostPerM real,
deckingLength real,
deckingWidth real,
deckingCostPerM real,
pondLength real,
pondWidth real,
pondCostPerM real,
featureNumber int,
featuresCostEa real,
lightingNumber int,
lightingCostEa real,
primary key (quotelD),
foreign key (clientlID) references

fileReader = csv.reader(open(MATERIALFILE, "rb*"))

for row in fileReader:

costs[row[0]] = float(row[1])
return costs

except:
print "make sure materials.txt exists and is in the correct format"
sys.exit()

def displayMenu():
print 1. Search for a quote”
print 2. Add quote™
print 3. Monthly report"
print 4. Exit"”

def searchQuote():

quoteNumber = getValidInt("Enter the quote number™, 0)

result = getQuoteFromNumber(quoteNumber)

iT not result:
print "Invalid quote number"
showAl lQuotes()
quoteNumber = getValidInt("Enter the quote number™, 0)
result = getQuoteFromNumber (quoteNumber)

quoteData = {}

quoteData[" lawnLength®] = result[0]
quoteData[" lawnWidth®] = result[1]
quoteData["patioLength®] = result[3]
quoteData["patioWidth®] = result[4]
quoteData["deckinglLength®] = result[6]
quoteData["deckingWidth®] = result[7]
quoteData["pondLength®] = result[9]
quoteData["pondWidth"] = result[10]
quoteData[" featureNumber®] = result[12]
quoteData[" lightingNumber®] = result[14]

displayQuote(quoteData)

def getQuoteFromNumber(quoteNumber):
try:
conn = sqglite3.connect(DB)
c = conn.cursor()

c.execute(" " "SELECT lawnLength, lawnWidth,
lawnCostPerM, patiolLength, patioWidth, patioCostPerM,
deckingLength, deckingWidth, deckingCostPerM,
pondLength,
pondWidth, pondCostPerM, featureNumber, featuresCostEa,
lightingNumber, lightingCostEa FROM quote WHERE
quotelD=?""", (quoteNumber,))

16

result = c.fetchone()
return result
except:

print "could not get result from database"

def showAllQuotes():
try:
conn = sqlite3.connect(DB)
c = conn.cursor()

c.execute(" " "SELECT quote.quotelD, client.clientName FROM quote,
client
WHERE quote.clientlD = client.clientID""")

result = c.fetchall()

for quote in result:
print "Quote Number:',
print quote[O]
print “Client Name:',
print quote[1]
print "

except:

print "could not get result from database"

def displayQuote(quoteData):
runningTotals = {}
totalMaterialCost = 0.0

print "Material Costs"
print "

print “"Lawn Costs"
print “Length:", quoteDatal["lawnLength™]
print “Width:", quoteData[" lawnWidth™]

runningTotals["lawnArea®] = quoteDatal[”lawnLength"] *
quoteData[" lawnWidth™]

print “"Total Area:", runningTotals[®lawnArea™]

print "Cost per square metre:', costs["lawnCostPerMetre™]

print "Total Cost:",

cost = runningTotals["lawnArea®] * costs["lawnCostPerMetre™]
print cost

totalMaterialCost += cost

print "Patio Costs"

print "Length:", quoteData[“patiolLength™]

print "Width:", quoteData["patioWidth™]

runningTotals["patioArea”®] = quoteData["patiolLength"] *
quoteData["patioWidth™]

print “"Total Area:", runningTotals["“patioArea™]

17

print "Cost per square metre:", costs["patioCostPerMetre”]
print "Total Cost:",

cost = runningTotals["patioArea®™] * costs["patioCostPerMetre™]
print cost

totalMaterialCost += cost

print "Decking Costs"

print "Length:", quoteData["deckingLength™]

print "Width:", quoteData["deckingWidth™]

runningTotals[“deckingArea®] = quoteData["deckingLength"] *
quoteData["deckingWidth"]

print "Total Area:", runningTotals["deckingArea™]

print "Cost per square metre:", costs["deckingCostPerMetre®]

print “"Total Cost:",

cost = runningTotals[“deckingArea®™] * costs["deckingCostPerMetre”]

print cost

totalMaterialCost += cost

print "Pond Costs"

print "Length:", quoteData["“pondLength®]

print "Width:", quoteData["pondWidth"]

runningTotals["pondArea®] = quoteData["pondLength®] *
quoteData[“pondWidth"]

print "Total Area:', runningTotals["pondArea®]

print "Cost per square metre:', costs[”pondCostPerMetre”]

print "Total Cost:",

cost = runningTotals["pondArea®] * costs["pondCostPerMetre”]

print cost

totalMaterialCost += cost

print "Water Feature Costs"

print "Number of water features:", quoteDatal[”featureNumber"]
print ""Cost per feature:", costs["featureCost"]

cost = costs["featureCost™] * quoteData["featureNumber™]
print “Total Cost:", cost

totalMaterialCost += cost

print "Lighting Costs"

print “"Number of lights:", quoteDatal["lightingNumber™]
print "Cost per light:", costs["lightingCost"]

cost = costs["lightingCost"] * quoteData["lightingNumber®]
print “"Total Cost:", cost

totalMaterialCost += cost

print "

print "Total Working Costs:", totalMaterialCost
print "

totallLabourMinutes = 0.0
print "Labour Costs"
print "

print "Lawn labour costs"

print "Minutes per square metre:", costs["lawnMinutes”]
print "Total area:", runningTotals["lawnArea®]

18

print “"Total minutes:",

minutes = costs["lawnMinutes®™] * runningTotals["lawnArea™]
print minutes

totalLabourMinutes += minutes

print "Patio labour costs”

print "Minutes per square metre:", costs|["patioMinutes”]
print “"Total area:", runningTotals["“patioArea™]

print “"Total minutes:",

minutes = costs["patioMinutes®] * runningTotals["patioArea”]
print minutes

totalLabourMinutes += minutes

print "Decking labour costs"

print "Minutes per square metre:", costs["deckingMinutes®]

print “"Total area:", runningTotals[deckingArea®]

print “Total minutes:',

minutes = costs[“deckingMinutes®] * runningTotals[“deckingArea®]
print minutes

totalLabourMinutes += minutes

print ""Pond labour costs"

print "Minutes per square metre:", costs["pondMinutes®]
print "Total area:", runningTotals["pondArea®]

print “"Total minutes:",

minutes = costs["pondMinutes®™] * runningTotals["pondArea®]
print minutes

totalLabourMinutes += minutes

print "Water feature labour costs"

print "Minutes per water feature:", costs["featureMinutes®]
print "Number Purchased"™, quoteData["featureNumber™]

print “"Total minutes:",

minutes = costs["featureMinutes®™] * quoteData[" featureNumber™]
print minutes

totalLabourMinutes += minutes

print "Garden lighting labour costs"

print "Minutes per water feature:", costs["lightingMinutes™]
print "Number Purchased™, quoteData["lightingNumber™]

print “Total minutes:',

minutes = costs["lightingMinutes®™] * quoteData[" lightingNumber™]
print minutes

totalLabourMinutes += minutes

print "

print “"Total Work (minutes):", totallLabourMinutes
hours = totallLabourMinutes / 60.0

print "Total Work (hours):"™, hours

print "Cost of Labour (per hour):", LABOURPERHOUR
print "Total Labour Cost",

totallLabourCost = hours * LABOURPERHOUR

19

print totallLabourCost

print "

print "Total Working Costs:", totalMaterialCost
print "Total Labour Costs:', totallLabourCost
grandTotal = totalMaterialCost + totallLabourCost
print “"Total to Pay by Customer:", grandTotal
print "

def newQuote():

print "1. Add quote for existing client”
print 2. Add quote for new client”
menuChoice = raw_input()

while menuChoice not in ["1", "27]:
print "Enter either 1 or 2"
menuChoice = raw_input()

if menuChoice == "1°:

clientNumber = displayClients()
else:

clientNumber = addClient()

if not clientNumber:
print "No client was selected"
return
print "Entering a quote for client " + str(clientNumber)

quoteData = {}

quoteData[" lawnLength®] = getvValidFloat("Enter lawn length™, 0)
quoteData[" lawnWidth®"] = getValidFloat("'Enter lawn width"™, 0)
quoteData["patioLength”] = getValidFloat("'Enter patio length', 0)
quoteData["patioWidth®] = getvValidFloat("Enter patio width”, 0)
quoteData["deckingLength®] = getValidFloat("Enter decking length™, 0)
quoteData["deckingWidth®] = getvValidFloat("Enter decking width"™, 0)
quoteData["pondLength®] = getvValidFloat("'Enter pond length™, 0)
quoteData["pondWidth®"] = getValidFloat("'Enter pond width"™, 0)
quoteData[" featureNumber®] = getValidlnt("Enter number of water
features'™, 0)
quoteData[" lightingNumber®] = getValidInt("Enter number of lighting
features', 0)

try:
conn = sqglite3.connect(DB)
¢ = conn.cursor()
today = datetime.date.today()
quoteDay = today.day
quoteMonth = today.month
quoteYear = today.year
quotelD = Int(time.time())

entries = (quotelD, clientNumber, quoteDay, quoteMonth, quoteYear,
quoteData[" lawnLength®], quoteData["lawnWidth"], costs[®lawnCostPerMetre-],

20

quoteData["patioLength®], quoteData["patioWidth"],
costs["patioCostPerMetre”],

quoteData["deckingLength®], quoteDatal"deckingWidth"],
costs["deckingCostPerMetre™],

quoteData["pondLength®], quoteData["pondWidth"],
costs["pondCostPerMetre],

quoteData[" featureNumber®], costs["featureCost"],
quoteData[" lightingNumber®], costs["lightingCost"])

c.execute("""INSERT INTO quote(quotelD, clientlD, dayOfQuote,
monthOfQuote, yearOfQuote, lawnLength, lawnWidth,
lawnCostPerM, patioLength, patioWidth,
patioCostPerM, deckinglLength,
deckingWidth, deckingCostPerM, pondLength,
pondWidth, pondCostPerM,
featureNumber, featuresCostEa, lightingNumber,
lightingCostEa) VALUES(
?,?,?2,?2,?2,2,7,7,7,?2,?2,?2,?2,2,2,2,7,2,?2,2,?)"" ",
entries)
conn_.commit()
c.close()
except:

print ""quote could not be saved to database"
print "Quote reference number:",
print quotelD
displayQuote(quoteData)

def getvValidFloat(prompt, minValue):
valid = False
answer = raw_input(prompt)
while not valid:
try:

if float(answer) >= minValue:
valid = True
except:
answer = raw_input("Enter a valid number™)

return float(answer)

def getvalidInt(prompt, minValue):
valid = False
answer = raw_input(prompt)
while not valid:
try:
it int(answer) >= minValue:
valid = True
except:
answer = raw_input("Enter a valid number'™)
return int(answer)

def addClient():
print "Add new client name:"

clientName = raw_input()

21

while not clientName:

clientName = raw_input(""Add a name')
try:

conn = sqglite3.connect(DB)

c = conn.cursor()

clientNumber = int(time.time())

c.execute("""INSERT INTO client VALUES(?,?)""", (clientNumber,
clientName))

conn.commit()

c.close()

return clientNumber
except:

print "could not save new client to database"
return

def displayClients():
try:
conn = sqglite3.connect(DB)
c = conn.cursor()

c.execute(” " "SELECT clientlD, clientName FROM client®" ")
result = c.fetchall()

c.close()

clientNumbers = []

for client in result:
print “"Client Number: " + str(client[0]) + " Name: " +
client[1]

clientNumbers.append(str(client[0]))
clientNumber = raw_input("'Choose a client number:'")

while clientNumber not in clientNumbers:
print "You didn"t enter a correct client number"
clientNumber = raw_input("'Choose a client number:'")

return clientNumber
except:
print "couldn®"t access information from the database"

def monthReport():
currentMonth = int(datetime.date.today() -month)
monthChosen = displayMonths()
it monthChosen > currentMonth:
whatYear = int(datetime.date.today().year) - 1
elsev-vhatYear = int(datetime.date.today().year)

try:
conn = sqlite3.connect(DB)

22

c = conn.cursor()

c.execute(" " "SELECT lawnLength, lawnWidth, patioLength, patioWidth,
deckingLength, deckingWidth, pondLength, pondWidth,
featureNumber, lightingNumber FROM quote
WHERE quote.monthOfQuote=? AND quote.yearOfQuote=?""",

(monthChosen, whatYear))
result = c.fetchall()
c.close()
except:
print "Couldn®t access information from the database

totalLawn = 0.0
totalPatio = 0.0
totalDecking = 0.0
totalPond = O.
totalFeatures
totalLighting

1 o

0.0
0.0
for quote in result:

totalLawn += quote[0] * quote[1]
totalPatio += quote[2] * quote[3]
totalDecking += quote[4] * quote[5]
totalPond += quote[6] * quote[7]
totalFeatures += quote[8]
totalLighting += quote[9]

totalCost = 0.0

print "Lawn total metres:",

print totallLawn

cost = totalLawn * costs[®lawnCostPerMetre™]
print “"Lawn total monthly value:",

print cost

totalCost += cost

print "Patio total metres:",

print totalPatio

cost = totalPatio * costs["patioCostPerMetre™]
print "Patio total monthly value:",

print cost

totalCost += cost

print "Decking total metres:",

print totalDecking

cost = totalDecking * costs["deckingCostPerMetre™]
print "Decking total monthly value:",

print cost

totalCost += cost

print "Pond total metres:',

print totalPond

cost = totalPond * costs["pondCostPerMetre”]
print "Pond total monthly value:",

print cost

23

totalCost += cost

print "Water Feature total:",

print totalFeatures

cost = totalFeatures * costs["featureCost™]
print "Water Feature total monthly value:",
print cost

totalCost += cost

print “Lighting total:",

print totalLighting

cost = totalLighting * costs["lightingCost™]
print "Lighting total monthly value:",

print cost

totalCost += cost

print "Total Monthly Value:",
print totalCost

def displayMonths():

months = {"1": "Jan®, "2°: "Feb®", "3": "Mar®, "4": "Apr-, "5°: "May",
"6": "Jun-,
*7°: "Jul®, "8": "Aug", "9": "Sep", "10":"Oct", "11": "Nov-",

"12": "Dec"}

for num, name in months.iteritems():
print num + ": " + name
monthChosen = raw_input("Enter the number of a month (1-12)')
valid = False
while not valid:

if monthChosen in months.keys():
valid = True
else:
monthChosen = raw_input('Make sure you enter a number (1-12)')

return int(monthChosen)

if _name_ == main

runFirstTime()

costs = getCostsFromFile(MATERIALFILE)

whille True:

displayMenu(Q)

menuChoice = raw_input()

while menuChoice not in ["17,%2%,°3",%4"]:
displayMenu()
menuChoice = raw_input("Enter a number 1-4'")

it menuChoice == "17:
searchQuote()

24

elif menuChoice == "27:

newQuote()

elif menuChoice == "3":
monthReport()

else:
print "system closing”

sys.exit()

25

Programming Techniques Used

Different Programming Techniques
Using libraries and built in functions

I've used built in functions but also had to use these libraries. Sys is for the system exit function, csv
is to read a CSV file, sqlite3 means | can use an sqlite database and datetime and date are needed for
when | need to find out the current date.

import sys
import csv
import sglite3
import datetime
import time

Use of constants

My program has three constants at the start:

LABOURPERHOUR = 16.49
DB = "gardening.db*
MATERIALFILE = "materials.txt”

| have kept them in capitals to make it obvious they are constants. They can be updated at the top
of the program and it will change them everywhere.

Use of relational database (create tables, add data, select data)

| am using sqlite for my database. This has the advantage that | don’t have to configure it with
passwords and make connections as it is just a file in the same folder. The file is called
gardening.db. | use two related tables: client and quote. Both of these tables are implemented
in the same way as the design.

| use the create table if not exists command at the start of my program so it doesn’t create an error
if the database already exists.

This is an example query searching for quotes by the quotelD:

c.execute(” " "SELECT lawnLength, lawnWidth, lawnCostPerM, patiolLength,
patioWidth, patioCostPerM, deckingLength, deckingWidth, deckingCostPerM,
pondLength, pondWidth, pondCostPerM, featureNumber, featuresCostEa,
lightingNumber, lightingCostEa FROM quote WHERE quotelD=?""",
(quoteNumber,))

After the query is made the result is put into a list. If more than one result is returned then the
results are in a two dimensional list. This is an example of where | have updated the database (with
new clientNumbers and clientNames):

c.execute(” " "INSERT INTO client VALUES(?,?)""", (clientNumber, clientName))

26

Error catching

Databases can make errors and errors can happen in my code, particularly if the user input is not
correct. | have used try-except statements to catch any errors, such as:

try:
if float(answer) >= minValue:
valid = True
except:
answer = raw_input(“Enter a valid number™)

In this example if answer is not able to convert to type float then an error is called (and the user will
be prompted again).

Reading data from an external file

All the material costs are stored in a file called materials. txt, this is read into the program
every time it starts. To do this | used the CSV library which makes it an easier task:

def getCostsFromFile(filename):
costs = {}
try:
fileReader = csv.reader(open(MATERIALFILE, "rb*"))

for row in fileReader:
costs[row[0]] = float(row[1])
return costs

except:
print "make sure materials.txt exists and is in the correct format"
sys.exit()

Every line is read in and a dictionary called costs is set with the key being the material cost and the
value being the amount. If the file cannot be read it is probably because it is not in the correct
format so an error message is displayed saying this.

Use of functions and procedures

| have used 14 functions and procedures in my code. This is an example of a function that takes two
parameters and returns a float:

def getvValidFloat(prompt, minValue):
valid = False
answer = raw_input(prompt)
while not valid:
try:
it float(answer) >= minValue:
valid = True
except:
answer = raw_input("Enter a valid number'™)
return float(answer)

Validation of user input

27

The example above shows how user input is validated both by making sure it is in a suitable type
(float) and that it is above a minimum value. All of my user input is validated and if the user enters
an unacceptable value they are prompted again and again until they do.

Lists and dictionaries

| have used both of these data structures in my program. COSts is an example of a dictionary (see
Reading Data from an External File) where values can be found by entering their key. Lists are like

Python’s arrays, every time the database queries return a value they are in lists and so their values
are accessed using an index, like this:

totalLawn += quote[0] * quote[1]
totalPatio += quote[2] * quote[3]
totalDecking += quote[4] * quote[5]
totalPond += quote[6] * quote[7]

Parts Working Together

Different Functions and Procedures

This diagram shows how my functions and procedures work together along with the database and
materials file to make the whole system work:

runFirstTime

materials.txt

T

monthReport

addClient displayQuotes

getQuoteFromNumb

er
showAllQuotes

The file materials.txt is only used once at the start of the program (after the database is checked to

see if it is created). After that the displayMenu function is called, this is where the program returns
after every user action until the user chooses to exit the program. The three main sub-menus of
displayMenu are searchQuote, newQuote and monthReport. searchQuote first of all calls the
showAllQuotes function that queries the database and displays all of the quote numbers and client
names, the user chooses a quote number and this is passed as a parameter to the
getQuoteFromNumber function that returns all of the details to searchQuote, finally the

28

displayQuotes function prints all of the information to the screen. newQuote gives the user the
option to choose either an existing client (using the displayClients function) or to add a new client
(using the addClient function). The rest of the newQuote prompts the user to enter all of the
gardening information before saving this to the database and displaying it using the displayQuotes
function. Both searchQuote and newQuote use the getValidint and getValidFloat function to check if
the user has entered data in the valid type and range. Finally the monthReport function calls the
displayMonths to allow the user to choose a correct month, this works differently from the other
two sub-menus and so doesn’t share any functions with them.

Coded Efficiently

Use of relational database

| could have saved my data as an external text file (and actually did that for the material costs but
that was because the brief said they may need to be updated and | thought that would be the
easiest way without having to go into the program, really this could have been included in the
relational database too but it might mean | would have to be careful with security and access to the
database), but | chose a relational database instead. This is because the data is kept efficiently
because | don’t need to repeat the client information for every quote as | can just use the clientID as
a foreign key in the quotes table. Also this is efficient because the database is very quick at finding
and search for data, particularly if compared to having to read in data from an external file and then
write my own searches using this data. Using SQL queries instead of just writing my own also means
they are more likely to work. | have used SQLite which | don’t think is the fastest database available
and probably isn’t as quick as something like MySQL but for this project it doesn’t make a big
difference because it won’t ever hold a huge amount of data and it also has the advantage that it
doesn’t need usernames and passwords to access it because it is just a file in the same directory as
my Python program. My queries all just make simple matching queries and so they should all run OK
even with lots of data in the tables.

| chose not to save the calculated quote data in the database even though this would make the
monthly reports function run quicker (and also slightly speed up the showQuotes function, although
not so that the user would notice). The reason for this is because | also save the information for how
much the materials cost — this means that the quote could use the old data for the quote if the costs
have been updated but would the current data for the monthly reports. My program doesn’t
actually do this although the database is set up to do it this way and it could be done if needed.

Functions and Procedures

All of my functions run quite quickly as | don’t have many nested loops that could make my program
run more slowly.

Although using functions does not make my program run any faster it does mean that | have had to
use less code because | can reuse functions whenever they are needed (the getValidFloat is a good
example of this because it is used throughout, also the displayQuote is a long procedure that is
called in more than one place). This means easier to read code and also easier to spot mistakes.

29

Data Structures
| have mainly used four different data structures in my code: lists (a bit like arrays in other
languages), dictionaries, a CSV file and a relational database.

This is an example of using a list to check if user input is not a member:
while menuChoice not in ["1","27,"3","4"]:

Lists hold data in order so they are used by the built in functions for the different parts of a row in a
CSV file like this:

fileReader = csv.reader(open(MATERIALFILE, “rb*)
for row in fileReader:
costs[row[0]] = float(row[1])

Lists are also easy to use in for loops in Python. Lists are also used by the Python SQLite function
that gets the result of a query (all of the parts of SELECT are the different elements in the list in the
order that they were written). When more than one result is returned then Python uses lists of lists
and so | use a for loop to go through one list at a time like this:

result = c.fetchall()

for quote in result:
print "Quote Number:",
print quote[O]

| use lists quite a lot when | want to check if a choice is not in a list of values like this:

while menuChoice not in ["1", "2"]:
print "Enter either 1 or 2"

| use lists when | want to hold data in an order and dictionaries when | need to access values based
on a key. For instance the months of the year are stored as a dictionary because | need to number
of the month to query the database:

months = {1: "Jan®, 2: "Feb®", 3: "Mar®, 4: "Apr-, 5: "May", 6: "Jun-,
7z "Jul®, 8: "Aug", 9: "Sep", 10:"0Oct", 11: "Nov", 12: "Dec"}

This means that if the user enters 3 | can use months|[3] to find the value ‘Mar’. | could have used a
list for this but because Python lists start at 0 and not 1 | didn’t want to complicate things by always
having to add 1 to the index to get the right month.

I've explained my reasons for using a relational database in the previous section. My database is
almost the same as it was in my design although it uses the types int, real and text instead of int,
float, text and date. | started to use date but found it very difficult to deal with and so | changed it to
three different integers for the day, month and year of the quote (this also makes it easier to check
what month the quote was in). The primary keys for both the client and quote tables are the integer
time (in milliseconds | think) that they were entered into the database, this means that no two will
have the same because it is impossible to enter all of the data that quickly.

Robust Solution
User validation

30

All user input in my code is validated. The getVal idInt and getVal idFloat functions make
sure numbers are entered in the correct format and with at least a minimum value. If entries are
not valid then the program prompts the user and loops (normally with a while loop) until a valid
entry is made.

Error Catching

As | mentioned earlier my program uses try-except statements that ‘catch’ when an error is
detected. This way my program doesn’t crash but an error message is printed to the screen and the
user is taken back to the previous menu.

Example

This is the getVal idFloat function:

def getvValidFloat(prompt, minValue):
valid = False
answer = raw_input(prompt)
while not valid:
try:
it float(answer) >= minValue:
valid = True
except:
answer = raw_input("Enter a valid number')
return float(answer)

In the third line the user is prompted to enter a number (the prompt is one of the parameters). The
user could do four things here:

1. Enter a number in the correct format (float) and above or equal to the minimum value
(minValue).
2. Enter a number in the correct format but below the minimum value.
Enter something in an incorrect format (in which case the minimum value doesn’t matter).
4. Not enter anything.

The Boolean value valid is set to False and the while loop will continue until the user enters a valid
entry (choice 1). If they did choice 2 then the Boolean conditional float(answer) >= minValue
would be False and so valid would not be set to true, if they did choice 3 or 4 then
float(answer)would cause an error because it wouldn’t be able to work and would mean the try-
except statement would print an answer. | have just realised that choice 2 would make the loop go
on forever so | have changed the function to say the following

def getvalidFloat(prompt, minvValue):
valid = False
answer = raw_input(prompt)
while not valid:
try:
it float(answer) >= minValue:
valid = True
else:
answer = raw_input(“Make sure the number is at least ™ +
str(minvalue))
except:
answer = raw_input("Enter a valid number'™)

31

return float(answer)

Now if the user enters a number below the minimum value the error message “Make sure the
number is at least minValue” and then prompts them to enter another one.

Most of the user input is numbers but the user also has to enter the client name, to make sure they
don’t leave this blank | have used this code:
clientName = raw_input()
while not clientName:
clientName = raw_input(""Add a name')

If they enter nothing then Python thinks that clientName is like a Boolean value False and so a while
loop will continue until they enter something.

32

Testing & Evaluation

Test Plan & Evidence of Tests

Num | Description | Test Input Data/User Expected Actual Action
ber Action Outcome Result Required
1.1 Opening Menu 1 Quote As No
menu choice 1 number is expected
works works prompted
1.2 Menu 2 The two As No
choice 2 client sub expected
works menus are
displayed
1.3 Menu 3 Months of All Re-order
choice 3 the year are | displayed months by
works displayed although numbers
(number not in the (1 before
then month) | obvious 11)
order
1.4 Menu 4 Closing As No
choice 4 message expected
works displayed
and program
exits
2.1 Search by Accepts
quote correct
number qguote
works number
2.2 Rejects
incorrect
quote
number
2.3 Rejects
non-
numeric
data
5.1 Adding Adding a Client Name: Charlie | New client As Round
quote quote for a | North, lawn length Charlie expected currency
works new client 10, lawn width 8, North is although to two
patio length O, patio | stored in the | all decimal
width 0, decking database currency is | places
length 5, decking and the total | displayed
width 8, pond length | working as along
2, pond width 4, costs are float
water features 1, £2220.00, number
garden lights 0 total labour
costs are
£884.96 and
the total to

33

5.2

pay is
£3104.96 all
of which is
stored in the
database

Adding a
quote for
an existing
client

Client Name: Charlie
North, lawn length
10, lawn width 8,
patio length 0, patio
width 0, decking
length 5, decking
width 8, pond length
2, pond width 4,
water features 1,
garden lights O

A list of
clients is
displayed
and it
accepts the
choice of
Charlie
North and
the total
working
costs are
£2220.00,
total labour
costs are
£884.96 and
the total to
pay is
£3104.96 all
of which is
stored in the
database

As
expected
although
all
currency is
displayed
as along
float
number

Round
currency
to two
decimal
places

6.1

Monthly
report
works

Two quotes
for May are
selected

Month chosen is May
(5)

The two
quotes in
the database
both have
labour of
£2220.00 so
the total
should be
£4440.00

As
expected

No

7.1

Changing
external
file

Double all
costs

New materials.txt is
shown in the image
(all costs are
doubled)

Restart the
program and
new quote is
entered with
the same
figures as
before. The
costs have
doubled so
the total
material cost
should be
£4440.00

As
expected

No

1.1: Quote number prompted

34

El Console &3
DA\WindowsCode\LandscapeGardening\gardening py

1. Search for a guote
2. Add guote

3. Monthly report

4. Exit

hnter the gquote number

1.2: The two quote submenu options are displayed:

| .)
& Consale 2

) D:\WindowsCode'\LandscapeGardeninghgardening.py
1l. Search for a guote

2. Rdd gquote

3. Monthly report

4. Exit

[

=

. Add quote for existing client
2. Add guote for new client

1.3: Months displayed

| Al |

El Console &2
D:AWindowsCode\LandscapeGardeninghgardening.py
1. Search for a guote

2. Rdd guote

3. Monthly reportc

4. Exit

11: Hov

10: Oct

12: Dec

1: Jan

3: Mar

2: Feb

5: May

4: Apr

T: Jul

6: Jun

9: Sep

8: Aug

Enter the number of a month (1-12)

1.4: System closes (grey square means program not running)
| -

El Console 52 b4
<terminated> D\WindowsCodehLandscapeGardening\gardening. py

1. Search for a guote
2. Add guote

3. Monthly report

4. Exit

4

syatem closing

5.1: Adding a new client and a new quote

35

=) Console &4

D:\WindowsCode\LandscapeGardening\gardening.py
1. Search for a quote

2. hdd quote

3. Monthly report

4. Exit

P

1. Add guote for existing client
2. Add guote for new client

2

Add new client name:

Entering a quote for client 1338317308
Enter lawn lengthlQ

Enter lawn widthé

Enter patio lengthO

Enter patio width(

Enter decking lengthS

Enter decking widtht

Enter pond lengthZ

Enter pond width4

Enter number of water featuresl
Enter number of lighting featuresO
Quote reference number: 1338317339
Material Costs

Lawn Costs

Length: 10.0

Width: 8.0

Total Area: 80.0

Cost per square metre: 15.5
Total Cost: 1240.0

Patio Costs

Length: 0.0

Width: 0.0

Total Area: 0.0

Cost per square metre: 20.99
Total Cost: 0.0

Decking Costs

Length: 5.0

Width: &.0

Total Area: 40.0

Cost per square metre: 15.75
Total Cost: 630.0

Pond Costs

Length: 2.0

Width: 4.0

Total Area: &.0

Cost per square metre: 25.0
Total Cost: 200.0

Water Feature Costsz

Humber of water features: 1
Cost per feature: 150.0
Total Cost: 150.0

Lighting Costs

Humber of lights: O

Cost per light: 5.0

Total Cost: 0.0

Total Working Costs: 2220.0

36

Labour Costs

Lawn labour costs
Minutes per sguare metre:
Total area: £0.0

Total minutes: 1600.0
Patio labour costs
Minutes per sguare metre:
Total area: 0.0

Total minutes: 0.0
Decking labour costs
Minutes per sguare metre:
Total area: 40.0

Total minutes: 1200.0
Pond labour costs
Minutes per sguare metre:
Total area: £.0

Total minutes: 360.0

Cost of Labour (per hour)

20.

20.

30.

45.

Water feature labour costs

Minutes per water feature: 60.0
Number Purchased 1

Total minutes: &0.0

Garden lighting labour costs
Minutes per water feature: 10.0
Number Purchased 0

Total minutes: 0.0

Total Work (minutes): 3220.0
Total Work (hours): 53.6666666667

: 16.49

Total Labour Cost £84.963333333

Total Working Costs: 2220.0
Total Labour Costs: E£84.963333333
Total to Pay by Customer: 3104.96333333

5.1: New client added to database:

w SQLite Manager - D:\WindowsCodelLandscapeGardening\gardening.db

Database Iable Index View Trigger Teols Help

Directory

XDS £ e e

|

b | (Select Profile Database) — ~ Go|

gardening.db

b Master Table (1)
4Tables (2)
client
clientlD
clientName
4quote
quotelD
clientlD
dayOfQuate
monthOfunt

n

4 TABLE client

Structure | Browse & Search | Execute SQLl DB Settings ‘

[Search] [Show All] [Add] [Dughcate] Edit *

clientID
1 |1338317308

rowid clientMName

|Charlie North

4 . r

Gecko12.0 077

Exclusive

SQlite 3.7.10

MNumber of files in selected directory: 13

ET:0 ms

5.1: New quote added to database:

@ sQLite Manager - DiWindowsCode\LandscapeGardening'\gardening.db

Database Table Index View Trigger Teols Help
§{| O £ ‘ =y g‘| g‘| Directory » | (Select Profile Database) ~ | Go
P ——— + ||| structure | Browse & Search | Execute s | o Settings|
» Master Table (1) TABLE quote l Search] [Show All] [Add] I Duplicate] Edi
aTables (2)
aclient rowid quotelD clientlD dsyOfQ.. month.. yearOGf. dayOflob month.. yearOfl..
clientlD 1 [1338317... [1338317... |29 |s |2012 | |
clienthame
quoteD
clientlD -
dayOfQuote 1l i |
manthOfunt =
SQUite 3.7.10 Gecko120 077 Bxclusive Number of files in selected directory: 13 ET:1 ms

5.2: Adding a quote for an existing client:

37

= Consale 72

D:\WindowsCode\LandscapeGardening'\gardening.py
1. Search for a gquote

2. ARdd guote

3. Monthly report

4. Exit

z

1. Add guote for existing client
2. Rdd gquote for new client

Client Number: 1338317308 Name: Charlie North
Choose a client number:]
Entering a cguote for client 1338317308
Enter lawn lengthlO

Enter lawn widthE

Enter patio lengthO

Enter patio width(

Enter decking lengthsS

Enter decking widthE

Enter pond length2

Enter pond width4

Enter number of water featuresl

Enter number of lighting features(
Quote reference number: 1338318718
Material Costs

Lawn Costs

Length: 10.0

Width: 8.0

Total Area: 80.0

Cost per sguare metre: 15.5
Total Cost: 1240.0

Patio Costs

Length: 0.0

Width: 0.0

Total Area: 0.0

Cost per sguare metre: 20.99
Total Cost: 0.0

Decking Costs

Length: 5.0

Width: 8.0

Total Area: 40.0

Cost per sguare metre: 15.75
Total Co=st: 630.0

Pond Costs

Length: 2.0

Width: 4.0

Total Area: 8.0

Cost per sguare metre: 25.0
Total Cost: 200.0

Water Feature Costs

Humber of water features: 1
Cost per feature: 150.0
Total Co=st: 150.0

Lighting Costs

HNumber of lights: 0

Cost per light: 5.0

Total Cost: 0.0

Total Working Costs: 2220.0

Labour Costs

Lawn labour costs

Minutes per =sguare metre: 20.0
Total area: 80.0

Total minutes: 1600.0

Patio labour costs

Minutes per =sgquare metre: 20.0
Total area: 0.0

Total minutes: 0.0

Decking labour costs

Minutes per sguare metre: 30.0
Total area: 40.0

Total minutes: 1200.0

Pond labour costs

Minutes per sguare metre: 45.0
Total area: 8.0

Total minutes: 360.0

Water feature labour costs
Minutes per water feature: £0.0
Number Purchased 1

Total minutes: 60.0

Garden lighting labour costs
Minutes per water feature: 10.0
Humber Purchased 0

Total minutes: 0.0

Total Work (minmtes): 3220.0
Total Work (hours): 53.6666666667
Co=st of Labour (per hour): 16.49
Total Labour Cost 884.963333333

Total Working Costs: 2220.0
Total Labour Costs: 884.963333333
Total to Pay by Customer: 3104.%6333333

5.2: New quote added to database:

1@ SQLite Manager - DAWindowsCode\LandscapeGardening)gardening.db L= O S
Database Table Index View Trigger Tools Help
3&| Oz £ m | B @‘ Wiz Directory b | (Select Profile Database) + | Go
I B .] Structure | Browse & Search | Execute SQL | DB Settings |
¥ Master Table (1) i TABLE quote [seoch | [showan | [nds | [puglicete | | Egit || Delte | 2
aTables 2)
b client rowid quotsD clientlD dayOfQ.. month.. yesrOf. dayDflob month.. yearOf.. lawnle.. lswnWi. 02| =
g 1 |1338317... [1338717... |29 |s |2012 | | | i) |8 |15
b Views (0) 2 |1338318... [1338317... |20 | |2012 | | | |10 | Jis| —
b Indexes (2)
b Triggers (0) i
SQLite3.7.10 Gecke120 077 Exclusive Number of files in selected directory: 13 ET:1ms

6.1: Monthly total (for May):

39

El Consale £2

D\WindowsCode'\LandscapeGardeninghgardening. py
1. S5earch for a guote

2. Add guote
3. Monthly report
4. Exitc

11: Haov

10: Cect

12: Dec

1: Jan

3: Mar

2: Feb

5: May

4: Lpr

7: Jul

&: Jun

S: Sep

8: Aug

Enter the number of a month (1-12)5
Lawn total metres: 1&60.0

Lawn total monthly wvalue: 2480.0
Patio total metres: 0.0

Patio total monthly value: 0.0
Decking total metres: 0.0

Decking total monthly wvalue: 1260.0
Pond total metres: 16.0

Pond total monthly wvalue: 400.0
Water Feature total: 2.0

Water Feature total monthly wvalue: 300.0
Lighting total: 0.0

Lighting total monthly wvalue: 0.0
Total Monthly Value: 4440.0

6.1: Change to the external file (original materials.txt):

1| [F] gardening [E materials.bet 22

1 lawnCostPerMetre,15.50
2 patioCostPerMetre, 20.99
3 deckingCoscPerMetre,15.75
4 pondCostPerMecre, 25.00
5 featureCost,150.00

& lightingCo=tc,5.00

7T lawnMinutes, 20

g patioMinutes, 20

S deckingMinutces=, 30

10 pondMinutes, 45

11 featureMinutes, 60

12 lightingMinutes=, 10

6.1: Change to the external file (new materials.txt):

3| [E] gardening [5] *materials.tet 53

F 1 lawnCostPerMetre,31.00
paticCostPerMetre,41.98
deckingCostPerMetre, 31.50
pondCostPerMetre, 50.00

5 featureCo=t, 300.00

6 lightingCost, 10|. 00

oLy RS

lawnMinutes, 20
Z patioMinutes, 20
S deckingMinutes, 30
10 pondMinutes, 45
11 featureMinutes, 60
12 lightingMinutes, 10

40

6.1: Result of doubling the material cost:

= Console 3

D\WindowsCode\LandscapeGardeninghgardening. py
1. Search for a gquote

2. &dd quote

3. Monthly report

4., Exit

b

1. Add guote for existing client
2. Add quote for new client

Client Number: 1338317308 Name: Charlie North
Choose a client number:1338317308

Entering a guote for client 1338317308

Enter lawn lengthl(Q

Enter lawn widthi

Enter patio length(

Enter patio widthl

Enter decking lengthS

Enter decking widtht

Enter pond lengthZ

Enter pond width4

Enter number of water featuresl
Enter number of lighting featuresC
buote reference number: 1338319349
Material Costs

Lawn Costs

Length: 10.0

Width: 8.0

Total Area: 80.0

Cost per sguare metre: 31.0
Total Cost: 2480.0

Patio Costs

Length: 0.0

Width: 0.0

Total Area: 0.0

Cost per =sguare metre: 41.98
Total Cost: 0.0

Decking Costs

Length: 5.0

Width: 8.0

Total Area: 40.0

Cost per sguare metre: 31.5
Total Cost: 1260.0

Pond Costs

Length: 2.0

Width: 4.0

Total Area: 8.0

Cost per sguare metre: 50.0
Total Cost: 400.0

Water Feature Costs

Humber of water features: 1
Cost per feature: 300.0
Total Cost: 300.0

Lighting Costs

Number of lights: O

Cost per light: 10.0

Total Cost: 0.0

Total Working Costs: 4440.0

Remedial Action
Test 1.3 shows that | should order the months to be displayed in the right order. | have changed the
keys of the dictionary to be integers and altered some of the code so this would work:

41

def displayMonths():

months = {1:

moR)

for num, name in months.iteritems|():

print strinum) + ": " + name
monthChosen = raw_input ("Enter ths
valid = False

1 M on b L R

Ir:]

while not walid:

Try:
if int (monthChosen) in months.keys():
valid = True

R T S)

else:
monthChosen = raw_input ("Mzke surs you enter a2 numbsr (1-12)")
except:
38 monthChosen = raw_input ("Mske surs you enter & numbsr (1-12)")

return int (monthChosen)

The months are now displayed like this:

e

D:\WindowsCode\LandscapeGardeninghgardening.py
1. Search for a gquote

Add guote

Monthly report

Exic

Jan
Feb
Mar
ApT
May
Jun

[T SRR S U ¢]

=1 o s

Jul

Aug

Sep

10: Cct

11: Nowv

12: Dec

Enter the number of a month (1-12)

oo

Tests 5.1 and 5.2 show that | should display currency in two decimal places.

This code shows a floating number to two decimal places:

print("£%.2f" % totalMaterialCost)

And so | have changed every part of the function displayQuote to display floats like this. The result is
this (only the last part shown):

42

Cost per feature: 150.0
Total Costc: 150.00
Lighting Costs

Humber of lights: 0O
Cost per light: 5.0
Total Cost:

0.00

Total Working Costs: 2220.00
Labour Costs

Lawn labour costs

Minutes per sguare metre: 20.0
Total area: 80.0

Total minutes: 1600.00

Patio labour costs

Minutes per sguare metre: 20.0
Total area: 0.0

Total minutes: 0.00

Decking labour costs

Minutes per sguare metre: 30.0
Total area: 40.0

Total minutes: 1200.00

Pond labour costs

Minutes per sguare metre: 45.0
Total area: 8.0

Total minutes: 360.00

Water feature labour costs
Minutes per water feature: €0.0
Humber Purchased 1

Total minutes: &60.00

Garden lighting labour costs
Minutes per water feature: 10.0
Humber Purchased 0

Total minutes: 0.00

Total Work (minutes): 3220.0
Total Work (hours): 53.&7

Cost of Labour (per hour): 16.49
Total Labour Cost B824.9%86

Total Working Costs: 2220.00
Total Labour Costs: EBB4.86
Total to Pay by Customer: 3104.96

Evaluation

My program works completely and the remedial action means it now displays currency and months
correctly too. My solution is robust as the user can enter anything and the program will just keep
going and ask them again until they get it right. The obvious next step would be to use a GUI but |
thought this is too complicated for this project and | wanted to focus on the data and the processing.

My database works and holds information effectively. | have used sqlite which does not require any
authorisation (neither does my program) so if this was to be a program used by an actual company
then more security would be needed. Also more details on the clients (not just their names) would
have to be stored. | use a long integer for the primary key which is a bit annoying because the user

43

has to enter a long number exactly to get the right answer, this could easily be changed to a smaller

number.

My solution allows the user to search for quotes and client names so the user doesn’t have to
remember all of them. It does this by querying the database. If the user adds a new client or quote
then the database is updated. All of the processing is done every time — this is slightly inefficient
(although it is not much processing) but it means the data can be kept up to date with the details in
the external file.

The external file is a CSV and so can be easily read and understood by another user (without having
to understand a relational database). If the data is in an incorrect form then it will not be loaded
and the program will exit, this is deliberate because | do not want my program to use bad data.

The user interface is what lets this project down a bit but like | said this would be the first thing to
change if | extended this program. The functions and procedures | have used wouldn’t make this
difficult.

44

