
1

ChipRider
AQA GCSE Computer Science
Mobile Assignment

1. Design of solution
2. Solution Development
3. Programming Techniques Used
4. Testing and Evaluation

2

Design of Solution

What the problem involves
This project has four separate parts:

• Buying a ticket for one passenger (single or return)
• Buying single tickets for a group of passengers
• Topping up credit up to 30 credits
• Viewing the most recently bought ticket

Each one of these parts will be a separate menu on my app and the first menu will have buttons that
link to all of them.

When a passenger buys a ticket the app must know how many credits they have left and also it
needs to record when they bought a ticket, how much it cost and how many passengers it is for. I
will use a database for this.

MIT AppInventor has all of the features I need because you can use it to create screens and write the
code for all of the buttons, labels and text boxes and you can also use it to design the screens as
well. AppInventor also has a web-based database so I can save all of the information from the app
to the web so there it doesn’t matter if the app is closed after the ticket is bought because the
information is still there. This also means the drivers code doesn’t have to be stored in the phone
which is more secure.

The first screen will look like this:

B a ticket (more than o

3

Buying a ticket for one passenger

The general program is like this:

1. The driver enters their code
2. The passenger ticks a box if they want a return
3. The passenger presses the buy button
4. The app finds out how many credits the passenger has
5. If the number of credits is less than the cost of the ticket then the passenger is taken to the

top up screen
6. But if the number of credits is more than or equal to the cost of the ticket then the time and

date of the ticket, the cost of ticket and the number of passengers (1) is saved to the web
and the cost of the ticket is deducted from the total number of credits.

7. The screen goes back to the main screen.

Buying a ticket for more than one passenger

You can only buy singles for a group so the general program is like this:

1. The driver enters their code
2. The passenger enters the number of passenger
3. The passenger presses the buy button
4. The app finds out how many credits the passenger has
5. If the number of credits is less than the cost of the ticket x the number of passengers then

the passenger is taken to the topup screen
6. But if the number of credits is more than or equal to the cost of the tickets then the time

and date of the ticket, the cost of ticket and the number of passengers is saved to the web
and the cost of the ticket is deducted from the total number of credits.

7. The screen goes back to the main screen.

Topping Up Credit

The app can only have a maximum of 30 credits so if the students tries to top up more than that they
should have a warning message. You can get to this screen directly and you can also be directed
here from the two buying screens if you don’t have enough credit.

The general program is simple and looks like this:

1. The current number of credits is found out from the web and this is displayed at the top of
the screen

2. The driver enters their code
3. The passenger enters the number of credits and then they press buy
4. If the original number of credits + the number to buy is less than or equal to 30 then the

topping up goes ahead
5. Else a warning message is displayed
6. The screen returns to the previous one.

4

Displaying the ticket

This is the simplest screen because all that has to happen is the values of the ticket type, the date
and time and the cost of the ticket are found out from the web database and they are displayed.

Overview
This diagram shows how you can get between all of the screens, it also shows how the database gets
information from screens and sends information to screens.

Web
Database

Main Screen

Buy For
One

Passeng
er

Buy For
Group

Passeng
ers

Top Up
Credit

Display
Ticket

5

Pseudocode
The pseudocode for buying a ticket for one passenger is like:

DriversCode ← GetFromDatabase(DriversCode)
Credits ← GetFromDatabase(Credits)
this could come from a database
IF DriversCode = 1234
THEN
 # check that its not a return
 IF TicketType ≠ ‘Return’
 THEN
 # check enough credits
 IF Credits ≥ 3
 THEN
 Credits ← Credits – 3
 Cost ← 3
 ENDIF
 ELSE
 IF Credits ≥ 5
 THEN
 Credits ← Credits – 5
 Cost ← 5
 ENDIF
 ENDIF
save all the data to a database
SaveToDatabase(Credits)
SaveToDatabase(TimeRightNow)
NumberOfTickets ← 1
SaveToDatabase(NumberOfTickets)
ENDIF

The pseudocode for buying a ticket for more than one passenger is like this:

DriversCode ← GetFromDatabase(DriversCode)
Credits ← GetFromDatabase(Credits)
IF DriversCode = 1234
THEN
 # check enough credits
 IF (NumberOfPassengers * 3) ≤ Credits
 THEN
 # update credits and record time bought
 Credits ← Credits – (NumberOfPassengers * 3)
 BoughtOn ← RightNow
 ENDIF
ENDIF
SaveToDatabase(Credits)
SaveToDatabase(BoughtOn)
SaveToDatabase(NumberOfPassengers)

6

The pseudocode for topping up credit looks like this:

DriversCode ← GetFromDatabase(DriversCode)
Credits ← GetFromDatabase(Credits)
IF DriversCode = 1234
THEN
 # check that doesn’t go over 30
 IF CreditsToAdd + Credits ≤ 30
 THEN
 # update credits
 Credits ← Credits + CreditsToAdd
 ENDIF
ENDIF

7

Solution Development
This is the development of the main screen (showing the four buttons that take you to the four
different screens)

This is the section of code that is run when the application starts – this is only run once before I
deleted it (in order to give the credits a starting value)

This is the actual code that will be run every time the screen starts.

8

This is the code that gets the credits when the answer from the database is returned (the 10 is the
variable watcher)

I’m doing exactly the same for the drivers code – this is only run once before I will delete this.

This is the final code for getting the driverCode.

9

This is watcher again showing that it has worked.

This is the final version that puts the two database calls together.

10

This was my first attempt at putting the two database returning parts of the code together but you
can see that it didn’t work.

11

I hadn’t realised the correct way to get information from this web database; this is the final version
that works out what the ‘tag’ from the web is and puts it into the correct value.

12

This is the completed code for the first screen showing all of the things that happen when the four
different buttons are pressed.

13

This is the screen showing the development of the screen to buy a single ticket.

14

This part of the code is very similar to the code on the first screen (the watchers show that it works).

15

This is what happens when the buy ticket button is pressed. First of all the cost of the ticket is 3 or 5
depending on whether the return check box is ticked (by default it is not). Then the drivers code is
checked to see if it is correct. If it is then the total number of credits – the cost is checked to see that
it will be 0 or above and if all of that is correct then the details of the ticket are saved to the
database.

16

This shows the bit of code after a ticket has been bought and you can see that the timer works.

This shows the credits and the drivers code but unfortunately the credits didn’t update. This is
because I forgot to save the credits to the web database.

17

This is the completed code that also saves the credits (minus the cost of the ticket).

18

This shows the number of credits after a ticket has been bought – this is shown more in the testing
section.

This is the final code.

19

This shows the development of the screen to buy tickets for groups of passengers. The field to enter
the driver details is a password field that will show the input as small black balls and not the actual
characters; this is like all of the similar screens.

20

This is the complete code for this screen. The left hand side is very similar to the other screens in
that it makes calls to the web database to find out the credits and the drivers code and also creates
the variables numPassengers (which is a number) and cost (which is also a number). The code on
the right is what happens when the buy button is pressed. Firstly the drivers code is checked and if
it is correct the credits are checked to see if they are enough (the cost variable is always 3 because
you cannot have return fares with groups of passengers). If the student has enough credits then the
database is updated (credits, passengers, the Boolean hasTicket, numPassengers, ticketCost and
boughtOn).

21

The top up screen displays information on the number of credits at the top of the screen (it says xxx
at the moment because this is the development, actually this will be replaced with the number).

22

The set-up code is very similar because this screen needs to know the driver code and also how
many credits the student has (this involves calls to the web database).

23

This is the whole code. I changed what happens when the database values are returned; now it
creates the string at the top of the screen that displays the amount of credits the passenger has left.
The right hand side of the code checks the driver’s code and then checks that the credits to be added
plus the actual credits the student has is not more than 30 (which is the limit). If it is 30 or under
then the database is updated. If it is over 30 credits or the driver’s code is wrong then a warning
text is displayed.

24

This is the final screen for displaying the ticket. It looks blank because there is no ticket to be
displayed but if a ticket had been bought it would display when the ticket was bought (time and
date), how much the ticket cost, whether it is a single or return and how many people the ticket is
for.

25

This is the completed code. The first thing that happens is the Boolean variable hasTicket is checked
with the database – if it is true then a ticket is displayed otherwise the message “You don’t have a
ticket!“ is displayed. If it is true then it in turn asks the database for the passengers, ticketCost and
boughtOn values. When each one of these are returned they are made into a string with
appropriate labels and they are displayed.

26

When I ran this the value of the formatted time was blank so I knew there was an error.

I changed the code from where the ticket was bought (single passenger and group code) to create
two variables called timeBought and dateBought and formatted them before saving them.

27

This meant that I didn’t have to format the string returned from the database and instead I could use
it straight away in the messages.

I also had to change what was called from the database.

28

This is the completed code for the print ticket section:

29

Programming Techniques Used
Use of a database
I have used an external web based database (this is not very secure and if this app was to be
developed for real then it would need a more secure version). The database can be seen here:
http://usfwebservice.appspot.com/ This database just contains ‘tags’ and their values so it is like a
dictionary in Python and not like a relational database but it works for what I want.

Values are saved to the database using the StoreValue procedure of the database:

This associates the value of tag with the value of valueToStore.

Values are found out from the database in two parts. Firstly the call is made to the database to find
a value:

30

However, this doesn’t mean they will come straight away or in the order I asked so I have to have
another procedure of my database called GotValue. This checks what the tag is and then you do
stuff with the valueFromWebDB:

I have had to repeat quite a lot of code throughout my project because the different screens do not
share global variables so every new screen needs another call to the database. This is quite
inefficient but I don’t know another way I could have made this work.

This is the line of code that tells the program where the database can be found:

31

Control Statements
Throughout my project I have had to use selection statements to decide what direction the program
should take. For instance this one here checks that the number of passengers multiplied by the cost
is greater than or equal to 0:

I’ve used IFELSE and IF statements for when I don’t need an alternative if the answer is false.

This is a nested conditional:

This means that if the first Boolean expression is true then the second one also has to be true for it
to happen. If the second IFELSE was just underneath this then I would have to test the driverCode
again.

There was no need to use any iteration in my program.

I’ve made use of variables throughout my program. In AppInventor they need to be declared and
given a first value, even if that value is going to be changed straight away:

32

This means I can use all of these variables in this screen. Unfortunately like I said earlier there is no
way I can see to make global variables have more scope than one screen so I have had to declare
these variables when every screen is initialised.

This is how you assign a new value to a variable in AppInventor:

Procedures
Almost every procedure in my program is called in response to a button being pressed, such as this
one which closes the screen when the ‘back’ button is pressed:

This means that there is no need for loops that listen for events like button pressed because this
happens automatically.

All five of my screens are completely self-contained, the only thing they can do is open other screens
up and close themselves. This makes the parts of the program work together very easily. The only
thing I had to be careful of was making sure I used the same tags for the database throughout the
program.

33

Working Solution
These images show the app working on my Android phone:

The screen shot below shows the main screen with buttons taking you to the other four sections:

This is the screen that allows the driver to enter their code and the return journey box to be ticked
before you buy:

34

This is a similar screen but instead of a return journey the user gets to choose how many passengers:

This screen allows the user to top up credits:

The final screen shows the ticket information:

35

Testing and Evaluation

Test Plan
Test
Number

Test Description Input Data /
User Action

Expected
Result

Actual
Outcome

Change
Required?

General
1.1 Application opens

correctly
Open app on
phone

Application
opens

App opens
(see image)

No

Main Screen
2.1 Buy One Ticket

Button
Press the Buy
One Ticket
button

The Buy One
screen opens

Screen opens
(see image)

No

2.2 Buy Group Ticket
Button

Press the Buy
Group Ticket
button

The Buy
Group screen
opens

Screen opens
(see image)

No

2.3 Top-up Credit Button Press the Top-
up Credit
button

The Topup
credit screen
opens

Screen opens
(see image)

No

2.4 View Ticket Button Press the View
Ticket button

The
ViewTicket
screen opens

Screen opens
(see image)

No

Buy One Screen
3.1 Go Back button Press Go Back

button
Return to
main screen

Works as
expected

No

3.2 Buy ticket with
incorrect driver code

Driver Code:
1212 and
press Buy
Ticket (make
sure that total
credits is
greater than
3)

Warning
message is
displayed
saying
incorrect code

No error
message is
displayed

Display error
message

3.3 Buying ticket with
not enough credits

Driver Code:
1234, make
sure credits is
less than 3
and press Buy
Ticket

Taken to top
up screen
without
buying a ticket

Taken to top
up screen (see
image)

No

3.4 Buying a single ticket Driver Code:
1234, make
sure the
return check
box isn’t
checked and
press Buy
Ticket

Check that the
display ticket
shows the
correct time
and date and
journey type
and that the
credits has
been reduced
by 3

The ticket is
purchased and
the ticket is
displayed but
it has taken
away 5 credits
instead of 3

Adjust
program to
make sure it
takes away 3
credits for a
single and not
5

36

3.5 Buying a return
ticket

Driver Code:
1234, make
sure the
return check
box is checked
and press Buy
Ticket

Check that the
display ticket
shows the
correct time
and date and
journey type
and that the
credits has
been reduced
by 5

The ticket is
purchased and
the ticket is
displayed but
it has taken
away 3 credits
instead of 5 –
this is
probably
linked to
problem in
test 3.4

Adjust
program to
make sure it
takes away 5
credits for a
return and not
3

Buy Group Tickets
4.1 Go Back button Press Go Back

button
Return to
main screen

Works as
expected

No

4.2 Buy ticket with
incorrect driver code

Driver Code:
1212, number
of passengers:
2 and press
Buy Ticket
(make sure
that total
credits is
greater than
3)

Warning
message is
displayed
saying
incorrect code

No error
message is
displayed

Display error
message

4.3 Buying ticket with
not enough credits

Driver Code:
1234, make
sure credits is
less than 6,
number of
passengers: 2
and press Buy
Ticket

Taken to top
up screen
without
buying a ticket

Application
crashes with
error message
“Bad
arguments to
x”

Find out why
the crash
occurred and
fix it

4.4 Buying a ticket for 2
passengers

Driver Code:
1234, number
of passengers:
2, make sure
credits
available is at
least 6 and
press Buy
Tickets

Check that the
display ticket
shows the
correct time
and date and
journey type
and the
number of
passengers is
2 and that the
credits has
been reduced
by 6

The ticket is
purchased but
the cost is 30
credits and
not 6 credits.

Fix the cost of
the tickets.

37

4.5 Buying a ticket for 3
passengers

Driver Code:
1234, number
of passengers:
3, make sure
credits
available is at
least 9 and
press Buy
Tickets

Check that the
display ticket
shows the
correct time
and date and
journey type
and the
number of
passengers is
3 and that the
credits has
been reduced
by 9

Works as
expected
(correct
amount
deducted (9 to
0) and ticket
displays
correctly)

No

Top-up Screen
5.1 Go Back button Press Go Back

button
Return to
main screen

Works as
expected

No

5.2 Check the display
credit works

Inspect the
watcher in the
code and
record the
credits, open
this screen
and compare
values

The two
values are the
same

Both values
display 10
credits

No

5.3 Buying credit with
the wrong driver
code

Driver Code:
1212, How
many to add:
10. Check
credit before
and press
TopUp button.

Error message
displayed and
the amount of
credits
remains
unchanged

Error message
displayed:
“Incorrect
code”

None
(although
change the
previous
screens to
show this
error
message)

5.4 Buying credit that
exceeds a total of 30

Driver Code:
1234, check
credit level
and enter
How Many to
Add as 31
minus credits
and press
TopUp button.

Error message
displayed that
it is too many
credits.

Error message
displayed:
“Too many
credits”

None
(although
change the
previous
screens to
show this
error
message)

5.5 Buying credit that
makes it up to 30

Driver Code:
1234, check
credit level
and enter
How Many to
Add as 30
minus credits
and press
TopUp button

Go back to the
topup screen
and check that
current credits
is 30

Current credit
was 10,
topped up 20
credits and
the result was
30.

No

38

View Ticket Screen
6.1 Go Back button Press Go Back

button
Return to
main screen

Works as
expected

No

6.2 Check display works
(single)

Buy a single
ticket for one
passenger and
record the
time and date
then open the
view ticket
screen

The time and
date are
accurate and
the cost is 3
and the
number of
passengers is
1

(evidenced in
test 3.4)

No

6.3 Check display works
(return)

Buy a return
ticket for one
passenger and
record the
time and date
then open the
view ticket
screen

The time and
date are
accurate and
the cost is 5
and the
number of
passengers is
1

(evidenced in
test 3.5)

No

6.4 Check display works
(2 passengers)

Buy a single
ticket for two
passengers
and record the
time and date
then open the
view ticket
screen

The time and
date are
accurate and
the cost is 6
and the
number of
passengers is
2

(evidenced in
test 4.4)

No

39

Evidence
1.1

40

2.1

2.2

41

2.3

2.4

42

3.2

3.3

43

3.4

44

45

3.5

46

47

This section of code shows the cost is set to 3 and 5 in the wrong order:

48

This is changed to this:

Re-testing for 3.4 and 3.5:

49

50

51

52

4.1

53

There are two places that could be causing this problem:

54

This is a shot with the variable watcher switched on and I can see that problem is the global cost
because it isn’t set:

I don’t know why this is the case because the other watcher on the global variable says it is 3, but I
have put the value 3 in to make sure it doesn’t happen:

55

Re-testing for 4.1

56

It doesn’t crash but it now it doesn’t go to the right screen and the credit has been taken anyway:

57

The two last images show that the credits have been taken off wrongly. I had a look at the code and
saw this:

Changed to:

58

Re-testing for 4.1

59

This screen shows that a new ticket hasn’t been purchased:

60

4.4

61

This part of the code is obviously wrong (it should store the cost of the ticket)

62

Changed to:

Re-testing for 4.4

63

It is taking away far too many credits and this part of code shows why:

64

Changed to:

Re-testing for 4.4:

65

66

4.5

67

5.2

68

5.3

69

5.4

70

5.5

71

Evaluation
My solution contains all of the 4 main parts of this problem:

1. It allows the user to buy a single or return ticket
2. It allows the user to buy a single ticket for multiple passengers
3. It allows the user to buy extra credit
4. It can display the current ticket

In more detail:

The first screen the user sees has four buttons (one for each of the four points above). This screen
doesn’t have any other clutter because I didn’t think this would add to the design of the app. The
app could have details about the previous use (a data structure that contains previous tickets and
top up history) but this wasn’t in the brief. The last part of the brief hasn’t been addressed directly
but I think I could have done this by having another app that accesses the database and sets a flag to
be ‘off’ or ‘stolen’ that is checked every time the app is used.

I have fully tested my app and am confident that the features work as they should. I had a series of
problems that I have fixed and it now works fine. However, if this app was to be used as a proper
app then I would need to make the database better. At the moment the driver code is set to ‘1234’,
this will be the same for every driver and isn’t secure. Also, every phone would access the same
information and I would have to have a better database that uses a primary key for the user so his or
her credit and ticket information is unique to them. This is significantly more work but I would have
to do it if my app was to go on sale.

I could improve my app by making it look more professional. At the moment I have just
concentrated on it working well but I could also design a logo and make the overall design sleeker.
The way people enter data could also be better – at the moment you have to use the normal
typewriter input system to enter numbers, this would be much better if it just used a number pad.
The input fields are mostly validated but I have found out that if you enter non-numeric data for the
number of passengers then it causes an error, this would have to be fixed. My warning dialog could
also be better.

The screens are all simple in design and they all have a ‘back’ button in the same place to make their
use quick and easy. This is good because the app will be used in rushed situations. The ticket display
is quite small and this could be changed but overall the screens work well.

If I had more time then I would do the fifth part of the brief and make the application look more
professional but overall I am happy with the way it works.

