ChipRider
AQA GCSE Computer Science
Mobile Assignment

1. Design of solution

2.Solution Development

3. Programming Techniques Used
4.Testing and Evaluation

Design of Solution

What the problem involves
This project has four separate parts:

e Buying a ticket for one passenger (single or return)
e Buying single tickets for a group of passengers

e Topping up credit up to 30 credits

e Viewing the most recently bought ticket

Each one of these parts will be a separate menu on my app and the first menu will have buttons that
link to all of them.

When a passenger buys a ticket the app must know how many credits they have left and also it
needs to record when they bought a ticket, how much it cost and how many passengers it is for. |
will use a database for this.

MIT Applnventor has all of the features | need because you can use it to create screens and write the
code for all of the buttons, labels and text boxes and you can also use it to design the screens as
well. Applnventor also has a web-based database so | can save all of the information from the app
to the web so there it doesn’t matter if the app is closed after the ticket is bought because the
information is still there. This also means the drivers code doesn’t have to be stored in the phone
which is more secure.

The first screen will look like this:

Welcome to ChipRider

Buy a ticket

Buy a ticket (more than one)

Top Up Credit

Display Ticket

Buying a ticket for one passenger
The general program is like this:

The driver enters their code

The passenger ticks a box if they want a return

The passenger presses the buy button

The app finds out how many credits the passenger has

vk wNe

If the number of credits is less than the cost of the ticket then the passenger is taken to the

top up screen

6. But if the number of credits is more than or equal to the cost of the ticket then the time and
date of the ticket, the cost of ticket and the number of passengers (1) is saved to the web
and the cost of the ticket is deducted from the total number of credits.

7. The screen goes back to the main screen.

Buying a ticket for more than one passenger
You can only buy singles for a group so the general program is like this:

The driver enters their code

The passenger enters the number of passenger

The passenger presses the buy button

The app finds out how many credits the passenger has

vk wN e

If the number of credits is less than the cost of the ticket x the number of passengers then

the passenger is taken to the topup screen

6. But if the number of credits is more than or equal to the cost of the tickets then the time
and date of the ticket, the cost of ticket and the number of passengers is saved to the web
and the cost of the ticket is deducted from the total number of credits.

7. The screen goes back to the main screen.

Topping Up Credit

The app can only have a maximum of 30 credits so if the students tries to top up more than that they
should have a warning message. You can get to this screen directly and you can also be directed
here from the two buying screens if you don’t have enough credit.

The general program is simple and looks like this:

1. The current number of credits is found out from the web and this is displayed at the top of
the screen

2. The driver enters their code

3. The passenger enters the number of credits and then they press buy
If the original number of credits + the number to buy is less than or equal to 30 then the
topping up goes ahead

5. Else a warning message is displayed

6. The screen returns to the previous one.

Displaying the ticket

This is the simplest screen because all that has to happen is the values of the ticket type, the date
and time and the cost of the ticket are found out from the web database and they are displayed.

Overview
This diagram shows how you can get between all of the screens, it also shows how the database gets
information from screens and sends information to screens.

Main Screen
Web

Database

Buy For
One Group
Passeng Passeng Credit Ticket
er ers

Pseudocode
The pseudocode for buying a ticket for one passenger is like:

DriversCode — GetFromDatabase(DriversCode)
Credits ~ GetFromDatabase(Credits)
this could come from a database
IF DriversCode = 1234
THEN
check that i1ts not a return
IF TicketType # ‘Return’
THEN
check enough credits
IF Credits 2 3
THEN
Credits « Credits — 3
Cost « 3
ENDIF
ELSE
IF Credits 2 5
THEN
Credits « Credits — 5
Cost « 5
ENDIF
ENDIF
save all the data to a database
SaveToDatabase(Credits)
SaveToDatabase(TimeRightNow)
NumberOfTickets « 1
SaveToDatabase (NumberOfTickets)
ENDIF

The pseudocode for buying a ticket for more than one passenger is like this:

DriversCode — GetFromDatabase(DriversCode)
Credits ~ GetFromDatabase(Credits)
IF DriversCode = 1234
THEN
check enough credits
IF (NumberOfPassengers * 3) < Credits
THEN
update credits and record time bought
Credits « Credits — (NumberOfPassengers * 3)
BoughtOn < RightNow
ENDIF
ENDIF
SaveToDatabase(Credits)
SaveToDatabase(BoughtOn)
SaveToDatabase(NumberOfPassengers)

The pseudocode for topping up credit looks like this:

DriversCode — GetFromDatabase(DriversCode)
Credits ~ GetFromDatabase(Credits)
IF DriversCode = 1234
THEN
check that doesn’t go over 30
IF CreditsToAdd + Credits < 30
THEN
update credits
Credits « Credits + CreditsToAdd
ENDIF
ENDIF

Solution Development

This is the development of the main screen (showing the four buttons that take you to the four
different screens)

Screen! BuyGroup BuyOne Topup ViewTicket e Screent

8 [HverticalArangement1 SenviceURL
DDispIayIn\risibIe Components in Viewer v g T

3 A A .
qm 5:09 PM lab_welcomeTitle
= btn_buyOne

' btn_buyGroup
Welcome To ChipRider Hotn_topupCredit
Buy One Ticket | = btn_viewTicket
| W DB
Buy Group Tickets
Top-up Credit
View Ticket
Media

Non-visible components

DB

This is the section of code that is run when the application starts — this is only run once before |
deleted it (in order to give the credits a starting value)

when Sereent.nitialize |

call tag

DB.StoreValue

et credits J

walueTo Store

10

This is the actual code that will be run every time the screen starts.

when Sereent.nitialize |

1
“" pBGetvalue 2 'q ™ credits

.

This is the code that gets the credits when the answer from the database is returned (the 10 is the
variable watcher)

E'

name

taHFrurn'll'Il'eI:l[IE |

name

valueFromWehDB I

value

valueFromWWehDB |

I’'m doing exactly the same for the drivers code — this is only run once before | will delete this.

This is the final code for getting the driverCode.

This is watcher again showing that it has worked.

'1234 l

name

driverCode I

name

valueFromWehDB |

value

valueFromWehDB I

This is the final version that puts the two database calls together.

This was my first attempt at putting the two database returning parts of the code together but you
can see that it didn’t work.

t)

name -
driverCode

name

valueFromWehDB I

value _
driverCode

name

credits I

name

valueFromWehDBE31 I

10

| hadn’t realised the correct way to get information from this web database; this is the final version
that works out what the ‘tag’ from the web is and puts it into the correct value.

10

dLEf) as numhber 0
1234 credits [i |

def) as number
& driverCode 0

when
shen DB.GotValue tagFromWebDElq T — |
\"E|LJEFF0I'I'IWEbDEcI name valueFromWebDB |
del .
it test C‘C value { text
i tagFromWehDB = i credits
then-dao
t global
AR credits e q value valueFromWebDBE |
W l
— —————
if test
i value tagFromWehDB | = {:, "= driverCode
then-do
t global
e driverCode “ cl Y31 \alueFromWebDB |
W J
— —————

11

This is the completed code for the first screen showing all of the things that happen when the four
different buttons are pressed.

when bin_buyGroup.Click |

do
call M text
| open another screen SerEsnEms r-‘J‘] : BuyGroup |
1

i

when Kin_topupCredit.Click |

[=]
czall screeniame text
| open another screen r: Topup

when hin_viewTicket.Click |

[+]
call N Cf text)
| open another screen — o " viewTicket
J

when hin_buyOne.Click

[+]
call screenName text
| open another screen r-'J‘ BuyOne

i

def ~ as number

4 credits 0

def _ as number

4 driverCode 0

when gereent.Initialize |
—

do

set) to text)

DB.ServiceURL q hitp:iusfwebservice appspot.com/
— J
call

DB.GetValue ° q = griverCode |
J

—

Il al
“ DBGetvalue 0 ' " credits

—

tagFromWehDB ‘

when DR GotValue tagFromWebDElq name
ValuEFromebDHq name valueFromWebDE |
- it test rj J
L=
'{', value tagFromWehbhDB | = {:, = redits |
then-da set global 1 |
credits q """ yvalueFromWehDB ‘
— J
— ————
it test rJ J
A[_', value tagFromWebDB | = C, ' driverCode
then-da set global t |
driverCode q "M% yvalueFromwehDB |
— J
e

12

This is the screen showing the development of the screen to buy a single ticket.

Screen1 BuyGroup | BuyOne Topup ViewTicket & LI BuyOne

= btn_back
B Display Invisible Components in Viewer -

qm 5:00 PM =] TableArrangement1
BuyOne

A llab_driverCode

I Ityt_driverCode
Go Back I
S lab_return
Enter Driver Code | b t
ox_return
Journey Type [return? btn_buyTicket
Buy Ticket | f#os

Media
Non-visible components

_ Add...
DB

13

This part of the code is very similar to the code on the first screen (the watchers show that it works).

name

taHFrnnﬂHel:lDE |

name

valueFromWehDB I

test |
YaUE tagFromWebDB

value

valueFromWehDB I

test value
P tagFromWehDB |

value

if

then-do
valueFromWehDE I

14

This is what happens when the buy ticket button is pressed. First of all the cost of the ticket is 3 or 5
depending on whether the return check box is ticked (by default it is not). Then the drivers code is

checked to see if it is correct.

If it is then the total number of credits — the cost is checked to see that

it will be 0 or above and if all of that is correct then the details of the ticket are saved to the

database.

when hin_buyTicket.Click

“ ifel test [d
Else = 4 box_return.Checked |
then-do -
set global to numhber
cost 3
Il
ca tag q text juurneyTwevl
DB.StoreValue walueToStore text
single
S
else-do -
zet glabal to number
cost 5
Il
o t=g q et journeyType |
DB.StoreValue walueToStore text
return
——
e ——
ifelse test ['JCJ [f glabal
txt_driverCode. Text = i driverCode
then-do | ©
ifelse test r,JLJ [""— —
l 1 alobal o adits | - L alabal et == [-'1 number g
then-do cal-l " p—
39 " hasTicket |
DB.StoreValue _, _1ostore
true
—
call tag q text |
passengers
DB.StoreValue valueToStnre‘ number
—
Il
- t=8 L. = ficketCost
DB.StoreValue 2al
—
call
huught()n
DB.StoreValue walueToStore call
timer.Mow
—
else-do a-l N rJ ot
open another screen seresntiams ‘] : Topup
o .
else-do set-] p—
txt_driverCode.Text q = Incorrect Cﬂdevl
— J
e),

This shows the bit of code after a ticket has been bought and you can see that the timer works.

N

call tag [text
passengers

DB.StoreValue . -1ostore number 1

call to [t snparnns |
DB.StoreValue EK_IN_MONTH=2,AM_PM=1,HOUR=5HOUR_OF_DAY=17,MIHUTE=39,SECOND=6,MILLISECOHD
=314,Z0NE_OFFSET=0,DST_OFFSET=3600000]
5

——
call ta, text
& bough* _n
DB.StoreValue walueToStore call -
timer.Now
[——
elsa.dn e =i]

This shows the credits and the drivers code but unfortunately the credits didn’t update. This is
because | forgot to save the credits to the web database.

when htn_back.Click |

]
|°3” close screen |

credits as c numhber 0

16

This is the completed code that also saves the credits (minus the cost of the ticket).

I

ifelse test q box_return.Checked

then-do

else-do

txt_driverCode.Text driverCode

—
ifelse

then-do

test

credits

cost o I

then-dao

call close screen I

|—v

| screeniame
open another screen

S S—"

else-do

17

This shows the number of credits after a ticket has been bought — this is shown more in the testing

section.

screasnhal
open another screen

This is the final code.

18

i
-

This shows the development of the screen to buy tickets for groups of passengers. The field to enter

the driver details is a password field that will show the input as small black balls and not the actual
characters; this is like all of the similar screens.

Screen1 | BuyGroup BuyOne Topup ViewTicket e

BuyGroup
s Button1
[Display Invisible Components in Viewer
qa 5:00 PM = TableArrangement
BuyGroup Htd driverCode
Allab_numPassengers
Go Back |
1 td_numPassengers
Enter Driver Code |nunun Aliab driverCod
ab_driverCode
Mumber Of Passengers | e
— bin_buyTicke
Buy Tickets | & oe
F. -1 .
L2 timer
Media
Non-visible components Add
a k= —
DB timer

19

This is the complete code for this screen. The left hand side is very similar to the other screens in
that it makes calls to the web database to find out the credits and the drivers code and also creates
the variables numPassengers (which is a number) and cost (which is also a number). The code on
the right is what happens when the buy button is pressed. Firstly the drivers code is checked and if
it is correct the credits are checked to see if they are enough (the cost variable is always 3 because
you cannot have return fares with groups of passengers). If the student has enough credits then the
database is updated (credits, passengers, the Boolean hasTicket, numPassengers, ticketCost and
boughtOn).

| R ban_back.Click T s T il
| " -
da

“l clase screon
| ifelse bt .
— . ’_\J_':F it driver Code Text l = L: 2 drivercode I
e
P as [umser o et cl tx1_mumPassengers, Text [
abal .

else ezt

|||||

then-da

20

The top up screen displays information on the number of credits at the top of the screen (it says xxx
at the moment because this is the development, actually this will be replaced with the number).

Screen1! BuyGroup BuyOne | Topup ViewTicket 8 iTopup
= btn_back
[Display Invisible Components in Viewer flbac
ﬁmﬁ 5:00 PM Allab_numCredits
Allab_warning
ENEE I =] TableArrangement1
o Bac

A llab_driverCode
You have xx credits -

*Hbd driverCode

Enter Driver Code quuuu Allab_howhMuch

How many to add? |

Lltd howMuch

Top Up | & bin_topUp

% DB

Media

Non-visible components Add

DB

21

The set-up code is very similar because this screen needs to know the driver code and also how
many credits the student has (this involves calls to the web database).

call ¢lose screen

number
i—“l

number
_—“I

name

tagFromWehDB

name

valueFromWehDB

ir test
wvaluge

tagFromWebDB

then-dao
walug

valueFromWehDB

if test .
V¥ tagFromWebDB I =

ther-da
value

wvalueFromWehDB |

22

This is the whole code. | changed what happens when the database values are returned; now it
creates the string at the top of the screen that displays the amount of credits the passenger has left.
The right hand side of the code checks the driver’s code and then checks that the credits to be added
plus the actual credits the student has is not more than 30 (which is the limit). If it is 30 or under
then the database is updated. If it is over 30 credits or the driver’s code is wrong then a warning
text is displayed.

e DB, GotValue ragFromiebDs c name FromWebDE I s
—
valuefromieb D8 name o soFromWebDB |
- v

* L] st
value

23

This is the final screen for displaying the ticket. It looks blank because there is no ticket to be
displayed but if a ticket had been bought it would display when the ticket was bought (time and
date), how much the ticket cost, whether it is a single or return and how many people the ticket is
for.

Screen1 BuyGroup BuyOne Topup | ViewTicket 8 LlviewTicket

— btn_goBack
[T] Display Invisible Components in Viewer —

3 A a -
qm 5:09 PM lab_warning
S| VerticalArrangement

2lab_ticketType
Go Back | - P

M llab_ticketPassengers
Allab_ticketCost
Allab_ticketTime
Allab_ticketDate

B

s
L2} timer

| Rename || Delete |

Media

Non-visible components

F5 3

DB |timer

Add...

24

This is the completed code. The first thing that happens is the Boolean variable hasTicket is checked
with the database —if it is true then a ticket is displayed otherwise the message “You don’t have a
ticket!” is displayed. If it is true then it in turn asks the database for the passengers, ticketCost and
boughtOn values. When each one of these are returned they are made into a string with
appropriate labels and they are displayed.

when htn_goBack.Click

http: ice.appspot.com/V

¢ 9 Ly =% pasTicket

all ta
DB.GetValue

when g
4'°" DB.GotValue tagFromWebDB |, name (oo wnenDE
walueFromWebDB narme valueFromWehDB |

—J

- it test ['J
= |
P tagrromwoboe | = (5 nasticket_| ‘
then-do ifel reet rJ 5
else &
'][—' value valueFromWehDB ‘ = d, true | ‘
ther-do call . —
DB.GetValue passengers
0]
" pBGetvaue 2 7 ticketCost
call 1. text
DB.GetValue - 4_ . boughtOn
else-do [T
set to [text _
lab_warning.Text q You don't have aticket! |
N
o ———

if = . text
] (| tagFromWebDBE | = (passengers
then-ce)
set to
lah_ticketPassengers.Text i E, = Ticketfor Iiﬂi“ r': VAUE alueFromWehDB | o d, = assengers ||
——

e
it test I3 value text
] i tagFromWebDB | = (ticketCost
B —
set to
lab_ticketCost.Text () % Jicket cost | join c, valuz o lueFromWebDE | join {:, o adits ||
__‘_l
it test []
M V2l e gFromWebDB | = [—', = houghton | ‘
thendo [.
{=] .
lab_ticketTime.Text Ci[ﬂ, = Time hought; I foin [": ! timerFormatTime c: "% valueFromWebDB | |
_—— I
==t i [‘: call instant C value
lab_ticketDate.Text d! % nate hought: ¥ | 10N i timer.FormatDate 1 valueFromWehDB |
-
e

25

When | ran this the value of the formatted time was blank so | knew there was an error.

walue

valueFromWehDB

if
walue

tagFromWehDB
then-do

valueFromWehDB |

walue

valueFromWehDB |

| changed the code from where the ticket was bought (single passenger and group code) to create
two variables called timeBought and dateBought and formatted them before saving them.

call close screen

else-do ‘ﬁ“ Ao

call close screen

|—v

else-do
eall screeniame
open another screen

26

This meant that | didn’t have to format the string returned from the database and instead | could use
it straight away in the messages.

if test I
YT tagFromWebDB
then-do
valie alueFrom\WehDB
if test "
YT tagFromWebDB
then-do
valie | alueFromWebDB

| also had to change what was called from the database.

LAl CImwenpUs

then-do | _
felse test value
valueFromWehDEBE

then-da

else-do

P

This is the completed code for the print ticket section:

call close screen

name

tagFromWehbDB

name

valueFromWebDB

value

tagFromWehDB

then-do

ifelse test

value

valueFromWebDB
then-do

then-do

i

then-do

if

then-do

28

Programming Techniques Used

Use of a database

| have used an external web based database (this is not very secure and if this app was to be
developed for real then it would need a more secure version). The database can be seen here:
http://usfwebservice.appspot.com/ This database just contains ‘tags’ and their values so it is like a
dictionary in Python and not like a relational database but it works for what | want.

Values are saved to the database using the StoreValue procedure of the database:

p creans | o =S
—
call ta text q
. q hasTicket
DB.StoreValue | -Tostore
true
—
call tag text
passengers
DB.StoreValue | | _1ostore glabal
numPassengers
—v, J
call ta text .
“ q ticketCost
: J
DE.StoreValue valueToStore [global] . [global
1 credits i cost
i - | i

This associates the value of tag with the value of valueToStore.

Values are found out from the database in two parts. Firstly the call is made to the database to find

a value:
—v. v
Il
“" DB.Getvawe ° C'. = drivercode |
— '
1l
“ DBgetvalue 0 4 "7 credits
g

29

However, this doesn’t mean they will come straight away or in the order | asked so | have to have
another procedure of my database called GotValue. This checks what the tag is and then you do

stuff with the valueFromWebDB:

name

when
2" DB.GotValue tagF”’mw‘EbDEq "% tagFromWebDB |
wvalueFromWeb DB CI

valueFromWehDB |
—
value tagFromWehDB = [:'; et credits

-

if testrj]
.

do

then-do
set global to value
credits valueFromWebDB
J

.

|

| test rJ
i = "'c value
1

tagFromWehDB = E'J; et driverCode

then-d
=ree set global

driverCode “ C': v\ alueFromWehDB |
J

T

|

| have had to repeat quite a lot of code throughout my project because the different screens do not
share global variables so every new screen needs another call to the database. This is quite
inefficient but | don’t know another way | could have made this work.

This is the line of code that tells the program where the database can be found:

A LALE L N IE L S TN I LF I AW I

d
- set

DB.ServicelURL e q et http:/usfwebsernice.appspot.com/

']
—
eall F—. I'-J I I

30

Control Statements

Throughout my project | have had to use selection statements to decide what direction the program
should take. For instance this one here checks that the number of passengers multiplied by the cost
is greater than or equal to O:

set global

numPassengers o '1 txt_numPassengers.Text |
J

—
ifelse test rjrﬁ I

a labal labal
|]E ! numPassengers | * [-'1 ! cost

call t C‘ text) |
=l = cradits

I’ve used IFELSE and IF statements for when | don’t need an alternative if the answer is false.

0

= [;_ nurmber
1

then-do

This is a nested conditional:

when htn_buyTicket.Click |

do |~ rj
ifelse test |/ [:u e
[4_txt_driverCode.Text | = i driverCode
then-dao -
set global to
numPassengers txt_numPassengers.Text
— '
ifelse test rjr; :]
" labal labal - b
|]E £ numPassengers | * [—'1 £ cost rq number o
then-do
call tag
DB.StoreValue valueToStore rjr’—l

This means that if the first Boolean expression is true then the second one also has to be true for it
to happen. If the second IFELSE was just underneath this then | would have to test the driverCode
again.

There was no need to use any iteration in my program.

I’'ve made use of variables throughout my program. In Applnventor they need to be declared and
given a first value, even if that value is going to be changed straight away:

o edits | [number -

Ny numPassengers c| nmber g
def st [number -

* driverCode c| nmber g

',I:l.

o

*

.,I:l.

31

This means | can use all of these variables in this screen. Unfortunately like | said earlier there is no
way | can see to make global variables have more scope than one screen so | have had to declare
these variables when every screen is initialised.

This is how you assign a new value to a variable in Applnventor:

o I tagFromWehDB | = ‘7 7" driverCode
t global
e driverCode “ {:I V2= alueFromWehDB
s, J
—
Procedures

Almost every procedure in my program is called in response to a button being pressed, such as this
one which closes the screen when the ‘back’ button is pressed:

when Kin_goBack.Click |

[«]
|°"‘” close screen |

This means that there is no need for loops that listen for events like button pressed because this
happens automatically.

All five of my screens are completely self-contained, the only thing they can do is open other screens
up and close themselves. This makes the parts of the program work together very easily. The only
thing | had to be careful of was making sure | used the same tags for the database throughout the
program.

32

Working Solution

These images show the app working on my Android phone:

The screen shot below shows the main screen with buttons taking you to the other four sections:

This is the screen that allows the driver to enter their code and the return journey box to be ticked
before you buy:

33

This is a similar screen but instead of a return journey the user gets to choose how many passengers:

This screen allows the user to top up credits:

The final screen shows the ticket information:

34

Testing and Evaluation

Test Plan
Test Test Description Input Data / Expected Actual Change
Number User Action Result Outcome Required?
General
1.1 Application opens Open appon Application App opens No
correctly phone opens (see image)
Main Screen
2.1 Buy One Ticket Press the Buy | The Buy One Screen opens | No
Button One Ticket screen opens | (see image)
button
2.2 Buy Group Ticket Press the Buy | The Buy Screen opens | No
Button Group Ticket Group screen | (see image)
button opens
23 Top-up Credit Button | Press the Top- | The Topup Screen opens | No
up Credit credit screen (see image)
button opens
2.4 View Ticket Button Press the View | The Screen opens | No
Ticket button | ViewTicket (see image)
screen opens
Buy One Screen
3.1 Go Back button Press Go Back | Return to Works as No
button main screen expected
3.2 Buy ticket with Driver Code: Warning No error Display error
incorrect driver code | 1212 and message is message is message
press Buy displayed displayed
Ticket (make saying
sure that total | incorrect code
credits is
greater than
3)
3.3 Buying ticket with Driver Code: Taken to top Taken to top No
not enough credits 1234, make up screen up screen (see
sure credits is | without image)
less than 3 buying a ticket
and press Buy
Ticket
34 Buying a single ticket | Driver Code: Check that the | The ticket is Adjust
1234, make display ticket purchased and | program to
sure the shows the the ticket is make sure it
return check correct time displayed but | takes away 3
box isn’t and date and it has taken credits for a
checked and journey type away 5 credits | single and not
press Buy and that the instead of 3 5
Ticket credits has
been reduced
by 3

35

3.5 Buying a return Driver Code: Check that the | The ticket is Adjust
ticket 1234, make display ticket purchased and | program to
sure the shows the the ticket is make sure it
return check correct time displayed but | takes away 5
box is checked | and date and it has taken credits for a
and press Buy | journey type away 3 credits | return and not
Ticket and that the insteadof 5— | 3
credits has this is
been reduced | probably
by 5 linked to
problem in
test3.4
Buy Group Tickets
4.1 Go Back button Press Go Back | Return to Works as No
button main screen expected
4.2 Buy ticket with Driver Code: Warning No error Display error
incorrect driver code | 1212, number | message is message is message
of passengers: | displayed displayed
2 and press saying
Buy Ticket incorrect code
(make sure
that total
credits is
greater than
3)
4.3 Buying ticket with Driver Code: Taken to top Application Find out why
not enough credits 1234, make up screen crashes with the crash
sure credits is | without error message | occurred and
less than 6, buying a ticket | “Bad fix it
number of arguments to
passengers: 2 X"
and press Buy
Ticket
4.4 Buying a ticket for 2 | Driver Code: Check that the | The ticket is Fix the cost of
passengers 1234, number | display ticket purchased but | the tickets.

of passengers:
2, make sure
credits
available is at
least 6 and
press Buy
Tickets

shows the
correct time
and date and
journey type
and the
number of
passengers is
2 and that the
credits has
been reduced
by 6

the cost is 30
credits and
not 6 credits.

36

4.5 Buying a ticket for 3 | Driver Code: Check that the | Works as No
passengers 1234, number | display ticket expected
of passengers: | shows the (correct
3, make sure correct time amount
credits and date and deducted (9 to
availableisat | journey type 0) and ticket
least 9 and and the displays
press Buy number of correctly)
Tickets passengers is
3 and that the
credits has
been reduced
by 9
Top-up Screen
5.1 Go Back button Press Go Back | Return to Works as No
button main screen expected
5.2 Check the display Inspect the The two Both values No
credit works watcher in the | values are the | display 10
code and same credits
record the
credits, open
this screen
and compare
values
5.3 Buying credit with Driver Code: Error message | Error message | None
the wrong driver 1212, How displayed and | displayed: (although
code many to add: the amount of | “Incorrect change the
10. Check credits code” previous
credit before remains screens to
and press unchanged show this
TopUp button. error
message)
5.4 Buying credit that Driver Code: Error message | Error message | None
exceeds a total of 30 | 1234, check displayed that | displayed: (although
credit level it is too many | “Too many change the
and enter credits. credits” previous
How Many to screens to
Add as 31 show this
minus credits error
and press message)
TopUp button.
5.5 Buying credit that Driver Code: Go back to the | Current credit | No
makes it up to 30 1234, check topup screen | was 10,
credit level and check that | topped up 20
and enter current credits | credits and
How Many to | is30 the result was
Add as 30 30.
minus credits
and press

TopUp button

37

View Ticket Screen

6.1 Go Back button Press Go Back | Returnto Works as No
button main screen expected
6.2 Check display works | Buy a single The time and (evidenced in | No
(single) ticket for one | date are test 3.4)
passenger and | accurate and
record the the costis 3
time and date | and the
then open the | number of
view ticket passengers is
screen 1
6.3 Check display works | Buy a return The time and (evidenced in | No
(return) ticket for one | date are test 3.5)
passenger and | accurate and
record the the costis 5
time and date | and the
then open the | number of
view ticket passengers is
screen 1
6.4 Check display works | Buy a single The time and (evidenced in | No
(2 passengers) ticket for two | date are test 4.4)
passengers accurate and
and record the | the cost is 6
time and date | and the
then open the | number of

view ticket
screen

passengers is
2

38

Evidence

11

39

2.1

THEE Dty

Codep

Oty Tvpe L }rpr_.”rlJ

40

2.3

41

3.2

42

43

44

45

46

This section of code shows the cost is set to 3 and 5 in the wrong order:

when ptn_buyTicket.Click |

dio ifel
else test
< hox_return.Checked |
then-da -
set global ta [, number
cost 3
.
call ta rJ text .
9 journeyType
DB.StoreValue wvalueTo Store rd text .
*] single
e
else-do
set global te [. number
cost 3
—
call ta rJ text .
4l journeyType
DB.StoreValue
wvalueToStore text
r:] return
S

47

This is changed to this:

" HUI Uy lICAEL L ILR |
dao ifel
alsa test
7 box_return.Checked |
then-do rJ
set glabal ta |, number
cost ' 3
—
call ta rJ text .
. 1 journeyType™
DB.StoreValue walueToStare rd text
*‘] single
—
else-do rJ
set global ta |, number
cost | 3
—_—
call ta rJ text
9 journeyType
DB.StoreValue
walueToStare text
r:] return
—_—

Re-testing for 3.4 and 3.5:

48

49

50

4.1

52

There are two places that could be causing this problem:

numPassengers m '~'| txt_numPassengers.Text |
J

test c{iﬁ _
lohbal l| labal ==
]_I_, d numPassengers | * d cost

l| numhber
0

=Cll tag c tet mraclrto |

WL L Hidwal “umpassengers
bi
']

11
o = C: = ficketCost

DB.StoreValue wvalueToStore lobal dT .
y credits | * ’ cost

call tao f‘ text .. _ - I

53

This is a shot with the variable watcher switched on and | can see that problem is the global cost
because it isn’t set:

test r.:rj {-'J It

9 "_driverCode.Text | = 3 ‘verCode
[m—
tglobe

numk. “ngers

° q txt_numPassenge. 'u.xt_|
|

{-'Jiglu:-.z

oy T text |
= B -
at credits

—
ost == {-‘ number 0

[-', b3l eradits

J
T J
lobal]
Liﬁ',gna credits | * {-',5

=y T

= hasTicket |

true

;

tag text |
passengers

wi 2 re lobal
5 . numPas

T ticket(:ust‘?|

wvalueToStare J —
i 5 credits

g
lobal
E"i 5 cost

= q et timeBought |

call : inEtarrtq call .
C; timer.FormatTime i timer.Now

o r’
else test 'ﬁﬁ "
]_i_i ginba n2 engers | *
en-do
call
DB.StoreValue v3lusToStore
—
call tag q
DB.StoreValue | _1osiore
—
call
DB.StoreValue
— A
call
DB.StoreValue
—
call
DB.StoreValue . ojueTostore
—v_ l

call

tag C': fext dateRounht |

| don’t know why this is the case because the other watcher on the global variable says it is 3, but |
have put the value 3 in to make sure it doesn’t happen:

reValue valusToStore %LJ
|

.

numrassengers |

-

59 L ™ ficketCost |

glabal

- " {:H number
credits i

tag rf text ..

54

Re-testing for 4.1

ou have 4 credits

BuyGroup

55

It doesn’t crash but it now it doesn’t go to the right screen and the credit has been taken anyway:

Passengers
12 credits

ime bought: | 1:40:52 AM

Date bought: May 27, 2012

56

The two last images show that the credits have been taken off wrongly. | had a look at the code and
saw this:

set global ta [

numPassengers L1 txt_numPassengers.Text
— J
ifelse test [:’

r: lobal lobal == |"' b
E £ numPassengers * - 8 cost ~ number 0

then-do [:J) ; rJ p— ‘
38 ¥ eradits

Changed to:

then-d -
ees set global

t
numPassengers ° “_txt_numPassengers.Text |

I
® , Alobal <= global 3
| cost g credits

text _
o credits

—
ifelse test r‘J
global

13

call tag

numPassengers

then-do

57

Re-testing for 4.1

You have 2 credits

Enter Driver Code

58

This screen shows that a new ticket hasn’t been purchased:

ViewTicket

59

4.4

You have 10 credits

BuyGroup

60

ViewTicket

icket for 2 passengers
30 credits
ht: 11:53:17 AM

: May 27, 2012

ou have -20 credits

Enter Driver Code

add7 lll

This part of the code is obviously wrong (it should store the cost of the ticket)

emenraes womsamae - yalue loStare | glabal
"| numPassengers |

J

1l
- = f':: = ticketCost

DB.StoreValue valueToStore r:r-J glabal r“' i |
i "

l—' credits d 3
call =i rJ dmnrb |

61

Changed to:

, - .
-\—\-r J
call tag rJ text .
1 ticketCost
DB.StoreValue valusToStore r{# rJ—
“_ olobal = number
lj numPassengers g 3
—
eall tag rJ ot T

Re-testing for 4.4

62

It is taking away far too many credits and this part of code shows why:

-1 =] J | 1 |
ta rJ text -
4 4 credits
DB.StoreValue walueTaoStore . ! —
b - —
- o labal . labal
|r,| global oo lr,I g credits | ¥ r,l g cost

rl |

63

Changed to:

ta rj text _
A credits
DB.StoreValue valusToStore

; - 7
‘l‘r‘ glabal - [, alobal

i credits i

numPassengers * o cost

call tag rf L A |

Re-testing for 4.4:

You have |0 credits

Enter Driver Code

How many to add?

(Top UPJ

64

ViewTicket

icket for 2 passengers

icket cost 6 credits
ime bought: 12:02:46 PM
Date bought: May 27, 2012

ou have 4 credits

Enter Driver Code

How many to add?

65

4.5

nter Driver Code {....

Jumber Of Passengers| 3

66

ViewTicket

icket for 3 passengers
icket cost 9 credits
ime bought: 12:04:42 PM

Date bought: May 27, 2012

ou have 0 credits

Enter Driver Code |

How many to add?‘

5.2

when pin_back.Click |
10 —
call close screen |

def) as rJ number
& credits “ 0

67

ou have 10 credits
Incorrect Code

Enter Driver Code I ssse

How many to add?} 10

68

5.4

69

5.5

e

ou have 10 credits

.oo many Cfe-dits
—

1| L]

:nter Driver Code \

How many to add?

70

Evaluation
My solution contains all of the 4 main parts of this problem:

1. It allows the user to buy a single or return ticket
2. It allows the user to buy a single ticket for multiple passengers
3. It allows the user to buy extra credit
4. It can display the current ticket
In more detail:

The first screen the user sees has four buttons (one for each of the four points above). This screen
doesn’t have any other clutter because | didn’t think this would add to the design of the app. The
app could have details about the previous use (a data structure that contains previous tickets and
top up history) but this wasn’t in the brief. The last part of the brief hasn’t been addressed directly
but | think | could have done this by having another app that accesses the database and sets a flag to
be ‘off’ or ‘stolen’ that is checked every time the app is used.

I have fully tested my app and am confident that the features work as they should. | had a series of
problems that | have fixed and it now works fine. However, if this app was to be used as a proper
app then | would need to make the database better. At the moment the driver code is set to ‘1234,
this will be the same for every driver and isn’t secure. Also, every phone would access the same
information and | would have to have a better database that uses a primary key for the user so his or
her credit and ticket information is unique to them. This is significantly more work but | would have
to do it if my app was to go on sale.

| could improve my app by making it look more professional. At the moment | have just
concentrated on it working well but | could also design a logo and make the overall design sleeker.
The way people enter data could also be better — at the moment you have to use the normal
typewriter input system to enter numbers, this would be much better if it just used a number pad.
The input fields are mostly validated but | have found out that if you enter non-numeric data for the
number of passengers then it causes an error, this would have to be fixed. My warning dialog could
also be better.

The screens are all simple in design and they all have a ‘back’ button in the same place to make their
use quick and easy. This is good because the app will be used in rushed situations. The ticket display
is quite small and this could be changed but overall the screens work well.

If I had more time then | would do the fifth part of the brief and make the application look more
professional but overall | am happy with the way it works.

71

