
LMC Instruction Set



Little Man Computer

Mark Clarkson
March 2014



Your First Program
Some key points:

•ALWAYS copy your code before compiling, as you will lose it

•Remember readability:
•LMC will ignore blank lines
•LMC is not case sensitive, but good habits help



Some ‘simple’ challenges
1. Ask the user for 3 numbers. Print them out in reverse order.

Test Data

Inputs Outputs

7 , 8 , 9 9 , 8 , 7

8 , 16 , 32 32 , 16 , 8

Finished Code



Some ‘simple’ challenges
2. Ask the user for 3 numbers. Add them up and print out the answer.

Test Data

Inputs Outputs

7 , 8 , 9 24

8 , 16 , 32 56

Finished Code



Some ‘simple’ challenges
3. Ask for 2 numbers. 

Print out the first - the second. 
Then the second - the first.

Test Data

Inputs Outputs

7 , 3 4 , -4

5 , 12 -7 , 7

Finished Code



Phase 2 - branching
Branching allows you to take a program down 2 different paths.

There are 3 types of branch:

Code Meaning

BRZ Branch if zero

BRP Branch if positive
(or zero)

BRA Branch always 
(used for looping)



Branching Example
Branching allows you to take a program down 2 different paths.



If Statements...
Human logic works like this:

If the two numbers are the same then print one of them out.
Otherwise, add them together and print the result.

We work through the positive result first, then the negative one. In LMC 
it doesn’t work like that.

If the two number are the same then jump to ‘same’.
Otherwise, add them together and print the result.
Same: Load the first number and print it out.

The easiest workflow is like this:

First, write your opening instructions.

In this case, input and store two 
numbers and then subtract them.



...continued
if answer IS zero... ...otherwise... & declarations

Add the branch if zero 
to the label ‘same’.

Leave some empty 
space.

Then write the 
“same” instructions

Next, add in the 
“otherwise” 
instructions.

Remembering to 
include a HLT

Finally, add the DAT 
declarations at the 
very end (only once)



Intermediate challenges
1. Ask the user for 2 numbers. If they are the same then double the 

number and print it out. If they are different then print them both 
out individually.

Test Data

Inputs Outputs

15 , 15 30

12 , 9 12 , 9

Finished Code



Intermediate challenges
2. Ask the user for 2 numbers. Print out biggest, then the smallest.

Test Data

Inputs Outputs

12 , 15 15 , 12

7 , 2 7 , 2

Finished Code



Intermediate challenges
3. Ask the user for 2 numbers, print out the result of the biggest 

number minus the smallest number

Test Data

Inputs Outputs

7 , 3 4

5 , 12 7

Finished Code



Loops!
Looping in LMC involves using one or more branches that repeats a set 
of instructions.

Predict what the following code will do:
(Hint: BRA means Branch Always)

Prediction

Now try it out and see for yourself.

In order to make it better, we need an escape clause.

Use a trace table to follow this problem 
through.

Try it with 20 and 4 as the inputs

The BRZ is a conditional escape from the loop

If the answer is zero, escape, 
otherwise keep looping.

This is just like a WHILE loop.



Advanced challenges
1. Ask the user for a big number, then a small number. Using only a BRP 

to loop round, keep subtracting the smaller number until you get past 
zero, then output the result.

Test Data

Inputs Outputs

20 , 3 -1

16 , 4 -4

Finished Code



Advanced challenges
2. You can declare a constant at the end of the program like this:

one DAT 1 (this will give the variable ‘one’ the value 1)
Using this, add to your previous program to count the number of 
times you can successfully subtract the smaller number.

Test Data

Inputs Outputs

20 , 3 6

16 , 4 4

Finished Code



Advanced challenges
3. Write a program that will ask for 2 numbers and then multiply them.

While this may be tricky, you should now know enough to do it!

4. How about a program that will divide two numbers and give the DIV 
and MOD. DIV is the whole number result of a division. MOD is the 
remainder.

e.g. 17 ÷ 5 = 3 remainder 2

5. Try writing a program that will check if two numbers are a factor of 
each other. First enter a big number, then a small number. If the 
small number is a factor then it should divide with no remainders.

6. Try improving program 5 so that it doesn’t matter which way round 
you enter the numbers.


