Games Programming

With Greenfoot

Project 1 - Wombats

Learn about -

« Opening a project

« Adding objects to the world
+ Running programs

- Viewing code

- Calling methods

+ Using documentation

Tasks -

1.

Opening a project
Download, unzip and run the Wombat project

Adding objects to the world

Right click the Wombat and choose hew Wombat().

Click on the game world to place it.
Hold shift while you click to place more than one.

Place a leaf somewhere on the edge of the screen.

Running programs
Use Act and Play to see how the program runs.

Viewing code

Actor

d

T 'g} Wamhat l

new Wombat()

Onen aditar

Double click on the Wombat actor class to see the program code.

The important bit is where it says public void act().

6. Calling methods
The line that says turnLeft(); is a method. Further down there are (complicated)
instructions on just how to do this - but we don’t need to worry about that right now.

Try changing this line to say turnRandom(); (note the capitals and the semi-colon).

/**
* Do whatever the wombat likes to to just now.
¥

public void act()

{
if(foundLeaf()) {

}

else if(canMove()) {
move();

}

else {
turnLeft();

}

Wombat wombat = new Wombat();

7. Close the code window and click Compile in the main Greenfoot window.
Create a new wombat and test the program.

8. Documentation

At the minute the wombat stops if it touches a leaf. v Source Code

Documentation

Go back to the Wombat code window and in the top right,
click on Source Code, then change it to Documentation.

There are 9 methods to choose from. Decide, just from the names, which method we
want to run when the wombat touches a leaf.

Go back to the Source Code view.

Work out which part of the public void act() method is set up to deal with what
happens when the wombat finds a leaf. Try writing the function call there.

Test the program out and see if it works.

Have you have learned about?

« Opening a project

- Adding objects to the world
 Running programs

- Viewing code

- Calling methods

+ Using documentation

Games Programming
With Greenfoot

Project 2 - Frog
Learn about -
- If statements
« Keyboard controls
- Changing images
Tasks -
1. Download, unzip and run the Frog project
2. Run the program and try pressing the left and right arrow keys. What happens?
3. If statements & Keyboard controls
Look at the Frog code and see if you can find 4 lines of code that make the frog move

left.

Copy and paste these 4 lines of code and try altering them to let the frog move right as
well. Test the program.

4. Changing images
At the top of the Frog code is a line that uses a picture file called frog-sitting.png.

This line tells the program to create a Greenfootlmage called sitting and to use the
file frog-sitting.png.

Copy and paste this code again, immediately underneath. Change the new line to that
it creates a Greenfootlmage called jumping that uses the file frog-jumping.png.

In the public void act() method is a test to see if the frog is on the ground. If the frog is
on the ground, the image is set to sitting and the verticalSpeed is set to 0.

If the frog isn’t on the ground, add one more line of code to change the image there as
well.

Test the finished program to see if it works.
Have you have learned about?
. If statements

« Keyboard controls
- Changing images

Games Programming
With Greenfoot

Project 3 - Cats. And lasers.

Learn about -

« Mouse input

« Rotating objects

« Adding objects at runtime
Tasks -

1. Download, unzip and run the Cat project

2. Mouse input
Go into the Pointer code and find the following line in public void act():

MouseInfo info = Greenfoot.getMouselInfol();

This line creates an object called info, of type Mouselnfo and runs the Greenfoot
method getMouselnfo() to give it a value.

As long as info exists - if (info != null) -then pointer needs to set its location to
the same position as the mouse pointer, so add this line inside the if statement:

setLocation(info.getX (), info.getY ())

Go back to the main window and create a new Pointer object. Run the program and
see if it works.

3. Rotating objects
Go into the Cat code and add 4 lines of code in public void act():

i. Setup Mouselnfo using the same line that was in the pointer code.

ii. Onlydothenextbitif (info != null)
(remember to put in curly braces - { and })

iii. Use the existing angleTo method to get the direction we want to point it
target = angleTo(info.getX(),info.getY ());

iv. Use the setRotation() method to point towards the target.
v. Use the move() method to move forwards.

Test the program to see if it works.

4. Adding objects at runtime
By editing the Floor code we can tell Greenfoot to add objects to the game world at the
start automatically. Add the following code to the private void prepare() method.

The first line will create a new object of type Cat (upper case C), called cat (lower
case) by creating a new Cat (upper case).

The second line will add the object to the world in the X and Y positions provided.

Cat cat = new Cat{();
addObject (cat,100,100) ;

Test that this works, and then add two more lines of code to add a pointer at (300,300).

Have you have learned about?

« Mouse input
- Rotating objects
« Adding objects at runtime

Games Programming
With Greenfoot

Project 4 - Frog v2

Learn about -

- Creating objects at runtime

« Moving objects automatically

« Respawning objects

« Random numbers

- Stopping Greenfoot

Tasks -

1. Download, unzip and run the Frog v2 project

2. Creating objects at runtime
Using what you learned with the cat project, edit the FrogWorld code to add 2 logs to
the game, at positions (700,250) and (300,320).

Check that the game works so far and that the frog can jump from one log to the other.

3. Moving objects automatically
We want the logs to automatically scroll to the left (like many good platform games).

There is already a variable called speed that we can use within the Log code. Inside
public void act(), use the setLocation() method to make the log slide to the left.

Hint: you can use getX() and getY() to get the log’s current location.

As always, check that this works. It should work for both logs, although they will get
stuck at the edge of the screen.

4. Respawning objects
Once an object reaches the edge of the screen we want it to disappear and respawn at
the right hand side.

To do this to each log, simply check if getX() is less than 25 (ie. its position is far to the
left) and set its location to (700,300) to make it appear on the right, around halfway up.

5. Random numbers
Having the logs always come back at exactly the same height is a bit boring. By
changing the second co-ordinate to a random number we can make each log start at a
random height.

Try replacing the number 300 with Greenfoot.getRandomNumber (450) - which
will create a random number between 1 and 350.

To make it even better, try to work out how to have the logs go a bit lower, and never
scrape along the ceiling.

6. Stopping Greenfoot
At the minute the game never ends.

Look in the Frog code to see what happens if the frog hits the very bottom of the world.
Replace the contents of the if statement with the line Greenfoot.stop () ; and see if
it works.

Hint: It’s always best to comment a line out using // rather than deleting it, just in case
you want to get it back later.

Have you learned about?

- Creating objects at runtime

« Moving objects automatically
« Respawning objects

« Random numbers

- Stopping Greenfoot

Games Programming
With Greenfoot

Project 5 - Crabs

Learn about -

- Rotation (recap)

« Random numbers (recap)

- Generating objects at runtime (recap)
« Collision detection

+ Object removal

Tasks -

1.

2.

Download, unzip and run the Crab project

Drop a crab into the world, run the game and the crab should walk to the right and get
stuck.

Rotation (recap)
Edit the Crab code so that it can turn left or right.

Hint 1: Look at previous programs to see how to check for a key press
Hint 2: Look at the Actor class to see how to set the rotation
Hint 3: Look at the Actor class to see how to get the original rotation

Random numbers (recap)
Edit the Lobster code so that it will always walk forward and turn randomly.

Hint 1: Generate a random number using Greenfoot.getRandomNumber(20)
Hint 2: Think about how to randomly turn left OR right.
Hint 3: The simplest solution will have the lobster turning up to 10 degrees at a time.

Generating objects at runtime (recap)
Edit the CrabWorld code to add 1 crab and 4 lobsters to the world.

Hint 1: Create a crab by saying Crab crab = new Crab();
Hint 2: Add the object to the world using addObject(, ,);
Hint 3: Give each lobster a slightly different name.

6. Collision detection
It’'s easiest to think of one object destroying another. The crab is going to eat the
lobsters, so this code goes in the Crab code.

We want the crab to detect a lobster that it is touching (intersecting with):

Lobster deadLobster =
(Lobster)getOnelIntersectingObject (Lobster.class);

While the crab is not touching the lobster, there is no intersecting object - and so there
is no deadLobster. In Java terms, deadLobster == null.

When we do touch a lobster then deadLobster != null.

If we do touch a lobster then use Greenfoot.stop(); to end the game. This will let us
know if it has worked.

7. Object removal
To remove an object from the world, use:

getWorld () .removeObject (deadLobster) ;

8. Extension
If you've coped well so far, then in the Crab code use the lobstersEaten variable to
count how many lobsters have been. Well. Eaten.

If all of the lobsters have been eaten then end the game.

Have you learned about?

- Rotation (recap)

« Random numbers (recap)

- Generating objects at runtime (recap)
- Collision detection

 Object removal

