7. P = ((NOT A) OR B) AND C

8. P = NOT((NOT A) AND B)

9. P = (A OR B) AND (C OR D)

10. P = NOT((A OR B) AND C)

11. P = A OR B OR C OR D

12. P = (A AND B) AND NOT C

Your name:

Binary Logic

Activity 1: How many values?

How many different ways can we arrange four bits in one nibble?

1 1	1	1
-----	---	---

Activity 2: Representing small numbers in binary

The denary number 13 in binary is written 1101

$$13 = \frac{8 \ 4 \ 2 \ 1}{1 \ 1 \ 0 \ 1} = 1101$$

Use the place value tables below to write the following numbers in binary.

Without place value tables:

11	Ξ		7	=	
5	=		8	=	
	=	0110		_ =	1100

What about this one?

23 = _____

Activity 7 Logic Charts

Draw logic charts for the following logic statements. You will need to use a <u>maximum</u> of three logic gates (OR, AND, NOT) for each question.

- 1. P = NOT A
- 2. P = A AND B
- 3. P = A OR B
- 4. P = NOT (A AND B)

5. P = (A AND B) OR C

6. P = NOT (A OR B) AND C

Nightclub Doorman Checks Activity 6

You have been asked by "the management" of Horbury Gardens to write a set of rules that must be checked when the doormen are letting customers into the nightclub.

1. Write some rules that the customers must have when they come in

a.	Rule 1
b.	Rule 2
C	Rule 3

- 2. There are two ways in which customers could still be allowed into the nightclub even if they didn't follow the rules. What are they?
 - a. Exception 1 ______
 - b. Exception 2 ______

If two rules both HAVE to be followed, we can add them together for example at Horbury Academy, you need your planner AND your five a day.

Sometimes we can make exceptions, for example you must have your tie on OR a uniform note in your planner.

Using the words "AND" and "OR", can you group the nightclub rules together to make one single rule that the bouncers could use?

Activity 3: Representing larger numbers in binary

Each individual digit in a binary number is a binary digit or "bit" for short. A bit can only have the values 0 or 1.

Usually bits are grouped by eight, and called a "byte". When we represent numbers in binary we shall usually use whole bytes.

Fill in this place value table, with the place values for 8 bits.

Use these place values to do the following conversions between binary and denary.

Try these without the place value table.

<u>Denary \rightarrow Binary</u>	Denary < Binary
135=	= 1000011
73 =	= 01010111
245=	= 11100101

What are the largest and smallest numbers you can represent in a byte?

To make a byte easier to read, it is usually divided into groups of 4, called nibbles e.g. 1110 0101. What is the meaning of the following terms?

- kilobyte (kB)
- megabyte (MB)
- gigabyte (GB)
- terabyte (TB)

Activity 4: Adding binary numbers

We can add binary numbers by columns.

If the total for a column is two (in binary 10) we write down 0 and "carry 1" to the next column.

If the total for a column is three (in binary, 11) we write down 1 and carry 1.

Try these:

		1	0	1	0	1	0	0	1	(169)
	+	0	0	1	0	1	0	1	0	(42)
										_
		•		-		_	•		•	
		0	1	0	1	1	0	1	1	(91)
	+	0	0	1	1	1	0	0	1	(57)
										_
	- 1		2							
Whata	about	this one	?							
		4	4	0	4	4	0	4	0	
		1	1	0	1	1	0	1	0	
	+	0	0	1	1	0	0	1	1	_

This is a special case which results in an "overflow", which is technically an error when we use eight bit bytes.

Activity 5 Binary Logic

