Fixed Point Binary

Complete the following table, made up of 4 bit integer parts and 4 bit fractional parts:

Denary	Binary
12.75	
	10101010
9.3125	

Complete the following table:

8-bit binary	Hexadecimal	Denary
00001010		
00001110	4 E	15
11100100	9 F	167
		255
	DC	

Complete the following table:

Denary	Positive Binary Representation	Negative Binary Representation
$\mathbf{- 4 7}$		
	$\mathbf{0 1 0 0} \mathbf{0 1 0 1}$	
		$\mathbf{1 1 0 0 0 0 1 1}$
		$\mathbf{1 1 1 1 0 0 0 0}$

Simple Binary Arithmetic

Convert the following numbers to 8 -bit signed integers and solve the equation. Show your working and convert the numbers back into denary to check.

1. $15+27$
2. $107+6$
3. $14+92$

Simple Binary Arithmetic

Convert the following numbers to 8 -bit signed integers and solve the equation. Show your working and convert the number back into denary to check.

1. $27-15$
2. 107-6
3. 14-92

Binary Multiplication 1

Multiply the following binary numbers.
Convert all of the numbers to denary to check:

1. 0011

0010 x
2. 00101011

00000110 x
3. 00010101

00001010 x

