GCSE Computer Science CPD Session for Leeds West Academy

Leeds West Academy

LEADING IN LEARNING

Outline Plan

- Binary Representation
- Low level programming
- Von Neumann architecture & the CPU
- Networking and protocols

Binary Numbers

Numbers

- how to convert positive denary whole numbers (0–255) into 8 bit binary numbers and vice versa
- how to add two 8 bit binary integers and explain overflow errors which may occur
- binary shifts
- how to convert positive denary whole numbers (0–255) into 2 digit hexadecimal numbers and vice versa
- how to convert from binary to hexadecimal equivalents and vice versa
- check digits.

Binary --> Denary

Denary --> Binary

173 - 128 = 45 45 - 32 = 13 13 - 8 = 5 128 64 32 16 8 4 2 1 1 0 1 0 1 1 0 1

0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0

0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1

1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0

190 Left shift <-- 1900 Right shift --> 19

0110 Left shift <-- 1100 Right shift --> 0011

Comparing number systems

Binary

Base 2

Good for computers

Hard for humans to remember

Denary

Base 10

Good for humans

Time consuming for computers to decode

Hexadecimal

Base 16

Easier for humans to remember than binary

Quicker for computers to decode than denary

Check digits

Waiting on clarification from OCR
Even Parity - an even number of 1s
0 1 1 1 0 1 1 (59)
Odd number of 1s so add a 1 to the start
1 0 1 1 1 0 1 1

Check digits

Waiting on clarification from OCR Transmitted data: 111111011 An odd number of 1s It must be wrong - resend!

Questions

 Using EVEN parity - complete these packets:

 0 1 1 1 0 0 1
 1 0 1 0 0 0 1

 Using EVEN parity - check these packets:

 0 0 1 0 1 0 1 0
 1 1 1 0 0 1 1