# GCSE Computer Science 

CPD Sessionfor eeds vestacaceny

Leeds West Academy
Leading in Learning


## Outline Plan

- Binary Representation
- Low level programming

Von Neumann architecture \& the GPU

- Networking and protocols


## Binary Numbers

## Numbers

- how to convert positive denary whole numbers (0-255) into 8 bit binary numbers and vice versa - how to add two 8 bit binary integers and explain overflow errors which may occur
- binary shifts
- how to convert positive denary whole numbers (0-255) into 2 digit hexadecimal numbers and vice versa
- how to convert from binary to hexadecimal equivalents and vice versa - check digits.


## Binary $-->$ Denary

$$
0 \mathrm{O}, \mathrm{O}, \mathrm{O}
$$

## Binary $-->$ Denary

|

## Denary --> Binary

$$
173-128=45
$$

$$
45-32=13
$$

$$
13-8=5
$$

## Binary Addition

$$
\text { 0. } 0 \text { 0. } 0 \text { 0. } 0 \text { 0 } 0 \text { 0 } 0 \text { 1 } 1 \text { 1 }
$$

## Binary Addition

$$
\begin{aligned}
& 01000141 \\
& \text { O缶 } 0 \text { 0 }
\end{aligned}
$$

## Binary Addition

$$
\text { 0, } 1 \text { 0, } 0,1 \text { 0 } 0 \text { 0 } 0 \text { 0 }
$$

## Binary Addition

$$
\begin{aligned}
& 1 \text { 100001001 } \\
& \text { O, O, 0, 0, } 0
\end{aligned}
$$

## Binary Shifts

190

## Léft shift:- -1900

Right Shift->19

## Binary Shifts

## 01110

## Leftishift < - 11100

Right Shift $\rightarrow 0011$

## Binary Shifts

## 01110



## Hexadecimal

$$
\begin{aligned}
& 0: 0: 0.0 \mathrm{~F}=6 \mathrm{c} 111111 \\
& 006 \mathrm{KK}
\end{aligned}
$$

## Hexadecimal



## Hexadecimal



## Hexadecimal

| 1101 | 1110 | 0110 | 1010 |
| :---: | :---: | :---: | :---: |
| 13 | 14 | 6 | 40. |
| B. | ® | \% | A |

## Hexadecimal

222

106

$$
\begin{aligned}
& 101 \text { 4 } 0 \text { 0, } 1010 \\
& 130 \\
& 6 \\
& 10 \\
& \text { D) } \\
& 6
\end{aligned}
$$

## Comparing number systems

## Binary

Base 2
Good for computers

Hard for humans to remember

Denary
Bäse 10
Good for humans

Time consuming for computers to decode

## Hexadecimal

Base: 16
Easier for humans to remember than binary

Quicker for computers to decode than denary

## Check digits

Waiting on canifatiob onjo@
Even Parity an even humber of 1 s
011,1011 (59)
Odd number of 1 s so add a 1 to the stait
1014,1041

## Check digits

Waiting on clification oune Qe
Transmitted data:
111140101
An odd number of 1 s
It must be wrong resend

## Questions

Using EVEN parity complete these packets.
$011.001, \quad, \quad 0 \quad 0.10: 0.1$
Using EVEN parity check these packets:
$0010,1010,0,1110.0111$

